SF-YOLO: A Novel YOLO Framework for Small Object Detection in Aerial Scenes

被引:0
|
作者
Sun, Meng [1 ,2 ]
Wang, Le [1 ,2 ,3 ]
Jiang, Wangyu [1 ,2 ]
Dharejo, Fayaz Ali [4 ,5 ]
Mao, Guojun [1 ,2 ,3 ]
Timofte, Radu [4 ,5 ]
机构
[1] Fujian Univ Technol, Coll Comp, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou, Peoples R China
[2] Fujian Univ Technol, Sch Comp Sci & Math, Fuzhou, Peoples R China
[3] Fujian Univ Technol, Technol Innovat Ctr Factored Transact Data Tourist, Minist Culture & Tourism, Fuzhou, Peoples R China
[4] Univ Wurzburg, Comp Vis Lab, CAIDAS, Wurzburg, Germany
[5] Univ Wurzburg, IFI, Wurzburg, Germany
关键词
computer vision; convolutional neural nets; convolution; feature extraction; object detection; MODEL;
D O I
10.1049/ipr2.70027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object detection models are widely applied in the fields such as video surveillance and unmanned aerial vehicles to enable the identification and monitoring of various objects on a diversity of backgrounds. The general CNN-based object detectors primarily rely on downsampling and pooling operations, often struggling with small objects that have low resolution and failing to fully leverage contextual information that can differentiate objects from complex background. To address the problems, we propose a novel YOLO framework called SF-YOLO for small object detection. Firstly, we present a spatial information perception (SIP) module to extract contextual features for different objects through the integration of space to depth operation and large selective kernel module, which dynamically adjusts receptive field of the backbone and obtains the enhanced features for richer understanding of differentiation between objects and background. Furthermore, we design a novel multi-scale feature weighted fusion strategy, which performs weighted fusion on feature maps by combining fast normalized fusion method and CARAFE operation, accurately assessing the importance of each feature and enhancing the representation of small objects. The extensive experiments conducted on VisDrone2019, Tiny-Person and PESMOD datasets demonstrate that our proposed method enables comparable detection performance to state-of-the-art detectors.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Lightweight Object Detection Networks for UAV Aerial Images Based on YOLO
    Yanshan LI
    Jiarong WANG
    Kunhua ZHANG
    Jiawei YI
    Miaomiao WEI
    Lirong ZHENG
    Weixin XIE
    Chinese Journal of Electronics, 2024, 33 (04) : 997 - 1009
  • [32] ADD-YOLO: a new model for object detection in aerial images
    Yang, Yifei
    Feng, Zhengyong
    Jin, Wei
    Miao, Pengcheng
    MULTIMEDIA SYSTEMS, 2025, 31 (02)
  • [33] Lightweight Object Detection Networks for UAV Aerial Images Based on YOLO
    Li, Yanshan
    Wang, Jiarong
    Zhang, Kunhua
    Yi, Jiawei
    Wei, Miaomiao
    Zheng, Lirong
    Xie, Weixin
    CHINESE JOURNAL OF ELECTRONICS, 2024, 33 (04) : 997 - 1009
  • [34] YOLO-Mamba: object detection method for infrared aerial images
    Zhao, Zhihong
    He, Peng
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (12) : 8793 - 8803
  • [35] Research on Object Detection Method Based on FF-YOLO for Complex Scenes
    Chen Baoyuan
    Liu Yitong
    Sun Kun
    IEEE ACCESS, 2021, 9 : 127950 - 127960
  • [36] GCL-YOLO: A GhostConv-Based Lightweight YOLO Network for UAV Small Object Detection
    Cao, Jinshan
    Bao, Wenshu
    Shang, Haixing
    Yuan, Ming
    Cheng, Qian
    REMOTE SENSING, 2023, 15 (20)
  • [37] MRD-YOLO: A Multispectral Object Detection Algorithm for Complex Road Scenes
    Sun, Chaoyue
    Chen, Yajun
    Qiu, Xiaoyang
    Li, Rongzhen
    You, Longxiang
    SENSORS, 2024, 24 (10)
  • [38] LEAF-YOLO: Lightweight Edge-Real-Time Small Object Detection on Aerial Imagery
    Quang, Nghiem Van
    Hoang, Nguyen Huy
    Son, Hoang Minh
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2025, 25
  • [39] ViT-YOLO:Transformer-Based YOLO for Object Detection
    Zhang, Zixiao
    Lu, Xiaoqiang
    Cao, Guojin
    Yang, Yuting
    Jiao, Licheng
    Liu, Fang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 2799 - 2808
  • [40] PSO-YOLO: a contextual feature enhancement method for small object detection in UAV aerial images
    Zhao, Zhihong
    Liu, Xinyue
    He, Peng
    EARTH SCIENCE INFORMATICS, 2025, 18 (02)