SF-YOLO: A Novel YOLO Framework for Small Object Detection in Aerial Scenes

被引:0
|
作者
Sun, Meng [1 ,2 ]
Wang, Le [1 ,2 ,3 ]
Jiang, Wangyu [1 ,2 ]
Dharejo, Fayaz Ali [4 ,5 ]
Mao, Guojun [1 ,2 ,3 ]
Timofte, Radu [4 ,5 ]
机构
[1] Fujian Univ Technol, Coll Comp, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou, Peoples R China
[2] Fujian Univ Technol, Sch Comp Sci & Math, Fuzhou, Peoples R China
[3] Fujian Univ Technol, Technol Innovat Ctr Factored Transact Data Tourist, Minist Culture & Tourism, Fuzhou, Peoples R China
[4] Univ Wurzburg, Comp Vis Lab, CAIDAS, Wurzburg, Germany
[5] Univ Wurzburg, IFI, Wurzburg, Germany
关键词
computer vision; convolutional neural nets; convolution; feature extraction; object detection; MODEL;
D O I
10.1049/ipr2.70027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object detection models are widely applied in the fields such as video surveillance and unmanned aerial vehicles to enable the identification and monitoring of various objects on a diversity of backgrounds. The general CNN-based object detectors primarily rely on downsampling and pooling operations, often struggling with small objects that have low resolution and failing to fully leverage contextual information that can differentiate objects from complex background. To address the problems, we propose a novel YOLO framework called SF-YOLO for small object detection. Firstly, we present a spatial information perception (SIP) module to extract contextual features for different objects through the integration of space to depth operation and large selective kernel module, which dynamically adjusts receptive field of the backbone and obtains the enhanced features for richer understanding of differentiation between objects and background. Furthermore, we design a novel multi-scale feature weighted fusion strategy, which performs weighted fusion on feature maps by combining fast normalized fusion method and CARAFE operation, accurately assessing the importance of each feature and enhancing the representation of small objects. The extensive experiments conducted on VisDrone2019, Tiny-Person and PESMOD datasets demonstrate that our proposed method enables comparable detection performance to state-of-the-art detectors.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Efficient-Lightweight YOLO: Improving Small Object Detection in YOLO for Aerial Images
    Hu, Mengzi
    Li, Ziyang
    Yu, Jiong
    Wan, Xueqiang
    Tan, Haotian
    Lin, Zeyu
    SENSORS, 2023, 23 (14)
  • [2] ESOD-YOLO: an enhanced efficient small object detection framework for aerial images
    Xu, Xin
    Li, Qi
    Pan, Jie
    Lu, Xingzheng
    Wei, Hongwei
    Sun, Mingzheng
    Zhang, Haoze
    COMPUTING, 2025, 107 (02)
  • [3] ECAP-YOLO: Efficient Channel Attention Pyramid YOLO for Small Object Detection in Aerial Image
    Kim, Munhyeong
    Jeong, Jongmin
    Kim, Sungho
    REMOTE SENSING, 2021, 13 (23)
  • [4] Small Object Detection in Traffic Scenes Based on YOLO-MXANet
    He, Xiaowei
    Cheng, Rao
    Zheng, Zhonglong
    Wang, Zeji
    SENSORS, 2021, 21 (21)
  • [5] NATCA YOLO-Based Small Object Detection for Aerial Images
    Zhu, Yicheng
    Ai, Zhenhua
    Yan, Jinqiang
    Li, Silong
    Yang, Guowei
    Yu, Teng
    INFORMATION, 2024, 15 (07)
  • [6] SOD-YOLO: A lightweight small object detection framework
    Xiao, Yunze
    Di, Nan
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [7] MEL-YOLO: A Novel YOLO Network With Multi-Scale, Effective, and Lightweight Methods for Small Object Detection in Aerial Images
    Yang, Yang
    Feng, Fangtao
    Liu, Guisuo
    Di, Juxing
    IEEE ACCESS, 2024, 12 : 194280 - 194295
  • [8] I-YOLO: a novel single-stage framework for small object detection
    Tong, Kang
    Wu, Yiquan
    VISUAL COMPUTER, 2024, 40 (12): : 8927 - 8944
  • [9] HDR-YOLO: Adaptive Object Detection in Haze, Dark, and Rain Scenes Based on YOLO
    Lyu, Zonglei
    An, Wei
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (05)
  • [10] SOD-YOLO: Small Object Detection Network for UAV Aerial Images
    He, Zhiqian
    Cao, Lijie
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2025, 20 (03) : 431 - 439