Prediction of COVID-19 in-hospital mortality in older patients using artificial intelligence: a multicenter study

被引:0
|
作者
Fedecostante, Massimiliano [1 ]
Sabbatinelli, Jacopo [2 ,3 ]
Dell'Aquila, Giuseppina [1 ]
Salvi, Fabio [1 ]
Bonfigli, Anna Rita [4 ]
Volpato, Stefano [5 ]
Trevisan, Caterina [5 ]
Fumagalli, Stefano [6 ]
Monzani, Fabio [7 ]
Antonelli Incalzi, Raffaele [8 ]
Olivieri, Fabiola [2 ,4 ]
Cherubini, Antonio [1 ,2 ]
机构
[1] IRCCS INRCA, Accettaz Geriatr & Ctr Ric invecchiamento, Geriatria, Ancona, Italy
[2] Univ Politecn Marche, Dept Clin & Mol Sci, Ancona, Italy
[3] IRCCS INRCA, Clin Lab & Precis Med, Ancona, Italy
[4] IRCCS INRCA, Sci Direct, Ancona, Italy
[5] Univ Ferrara, Dept Med Sci, Ferrara, Italy
[6] Univ Florence, Geriatr Intens Care Unit, Dept Expt & Clin Med, Florence, Italy
[7] Nursing Home Misericordia, Intermediate Care Unit, Pisa, Italy
[8] Campus Biomed Univ & Teaching Hosp, Unit Geriatr, Dept Med, Rome, Italy
来源
FRONTIERS IN AGING | 2024年 / 5卷
关键词
COVID-19; mobility; neutrophil-to-limphocyte ratio; in-hospital mortality; artificial intelligence; LYMPHOCYTE RATIO; NEUTROPHIL;
D O I
10.3389/fragi.2024.1473632
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Background Once the pandemic ended, SARS-CoV-2 became endemic, with flare-up phases. COVID-19 disease can still have a significant clinical impact, especially in older patients with multimorbidity and frailty.Objective This study aims at evaluating the main characteristics associated to in-hospital mortality among data routinely collected upon admission to identify older patients at higher risk of death.Methods The present study used data from Gerocovid-acute wards, an observational multicenter retrospective-prospective study conducted in geriatric and internal medicine wards in subjects >= 60 years old during the COVID-19 pandemic. Seventy-one routinely collected variables, including demographic data, living arrangements, smoking habits, pre-COVID-19 mobility, chronic diseases, and clinical and laboratory parameters were integrated into a web-based machine learning platform (Just Add Data Bio) to identify factors with the highest prognostic relevance. The use of artificial intelligence allowed us to avoid variable selection bias, to test a large number of models and to perform an internal validation.Results The dataset was split into training and test sets, based on a 70:30 ratio and matching on age, sex, and proportion of events; 3,520 models were set out to train. The three predictive algorithms (optimized for performance, interpretability, or aggressive feature selection) converged on the same model, including 12 variables: pre-COVID-19 mobility, World Health Organization disease severity, age, heart rate, arterial blood gases bicarbonate and oxygen saturation, serum potassium, systolic blood pressure, blood glucose, aspartate aminotransferase, PaO2/FiO2 ratio and derived neutrophil-to-lymphocyte ratio.Conclusion Beyond variables reflecting the severity of COVID-19 disease failure, pre-morbid mobility level was the strongest factor associated with in-hospital mortality reflecting the importance of functional status as a synthetic measure of health in older adults, while the association between derived neutrophil-to-lymphocyte ratio and mortality, confirms the fundamental role played by neutrophils in SARS-CoV-2 disease.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Prediction of in-hospital mortality rate in COVID-19 patients with diabetes mellitus using machine learning methods
    Pooneh Khodabakhsh
    Ali Asadnia
    Alieyeh Sarabandi Moghaddam
    Maryam Khademi
    Majid Shakiba
    Ali Maher
    Elham Salehian
    Journal of Diabetes & Metabolic Disorders, 2023, 22 : 1177 - 1190
  • [32] Model Prediction for In-Hospital Mortality in Patients with COVID-19: A Case-Control Study in Isfahan, Iran
    Abdollahpour, Ibrahim
    Aguilar-Palacio, Isabel
    Gonzalez-Garcia, Juan
    Vaseghi, Golnaz
    Otroj, Zahra
    Manteghinejad, Amirreza
    Mosayebi, Azam
    Salimi, Yahya
    Javanmard, Shaghayegh Haghjooy
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2021, 104 (04): : 1476 - 1483
  • [33] Machine learning for prediction of in-hospital mortality in COVID-19 patients: results from an Italian multicentre study
    Paris, Sara
    Inciardi, Riccardo Maria
    Specchia, Claudia
    Vezzoli, Marika
    Oriecuia, Chiara
    Lombardi, Carlo Mario
    Murillo, Natalia Herrera
    Pagnesi, Matteo
    Tomasoni, Daniela
    Ameri, Pietro
    Carubelli, Valentina
    Agostoni, Piergiuseppe
    Canale, Claudia
    Carugo, Stefano
    Danzi, Giambattista
    Di Pasquale, Mattia
    Sarullo, Filippo
    La Rovere, Maria Teresa
    Mortara, Andrea
    Piepoli, Massimo
    Porto, Italo
    Sinagra, Gianfranco
    Volterrani, Maurizio
    Gnecchi, Massimiliano
    Leonardi, Sergio
    Merlo, Marco
    Iorio, Annamaria
    Giovinazzo, Stefano
    Bellasi, Antonio
    Zaccone, Gregorio
    Camporotondo, Rita
    Catagnano, Francesco
    Dalla Vecchia, Laura
    Maccagni, Gloria
    Mapelli, Massimo
    Margonato, Davide
    Monzo, Luca
    Nuzzi, Vincenzo
    Pozzi, Andrea
    Provenzale, Giovanni
    Tedino, Chiara
    Guazzi, Marco
    Senni, Michele
    Metra, Marco
    EUROPEAN HEART JOURNAL SUPPLEMENTS, 2021, 23 (SUPPL G)
  • [34] Machine learning for prediction of in-hospital mortality in COVID-19 patients: results from an Italian multicentre study
    Paris, Sara
    Inciardi, Riccardo Maria
    Specchia, Claudia
    Vezzoli, Marika
    Oriecuia, Chiara
    Lombardi, Carlo Mario
    Murillo, Natalia Herrera
    Pagnesi, Matteo
    Tomasoni, Daniela
    Ameri, Pietro
    Carubelli, Valentina
    Agostoni, Piergiuseppe
    Canale, Claudia
    Carugo, Stefano
    Danzi, Giambattista
    Di Pasquale, Mattia
    Sarullo, Filippo
    La Rovere, Maria Teresa
    Mortara, Andrea
    Piepoli, Massimo
    Porto, Italo
    Sinagra, Gianfranco
    Volterrani, Maurizio
    Gnecchi, Massimiliano
    Leonardi, Sergio
    Merlo, Marco
    Iorio, Annamaria
    Giovinazzo, Stefano
    Bellasi, Antonio
    Zaccone, Gregorio
    Camporotondo, Rita
    Catagnano, Francesco
    Vecchia, Laura Dalla
    Maccagni, Gloria
    Mapelli, Massimo
    Margonato, Davide
    Monzo, Luca
    Nuzzi, Vincenzo
    Pozzi, Andrea
    Provenzale, Giovanni
    Tedino, Chiara
    Guazzi, Marco
    Senni, Michele
    Metra, Marco
    EUROPEAN HEART JOURNAL SUPPLEMENTS, 2021, 23 (0G) : G95 - +
  • [35] Prediction of Mortality in Inpatients of Covid-19 Using Statistical and Artificial Intelligence Approaches: A Case Study in Sakarya
    Adak, M. Fatih
    Akpinar, Mustafa
    Yildiz, Esra
    Koroglu, Mehmet
    Karabay, Oguz
    IEEE ACCESS, 2024, 12 : 134809 - 134821
  • [36] Clinical characteristics and risk factors for in-hospital mortality of COVID-19 patients in Hubei Province: A multicenter retrospective study
    He, Wu
    Li, Gen
    Xu, Ke
    Yu, Bo
    Sun, Yang
    Zhong, Kaineng
    Zhou, Da
    Yan, Yongcui
    Wu, Junfang
    Wang, Dao Wen
    IJC HEART & VASCULATURE, 2025, 56
  • [37] Prediction model for in-hospital mortality in patients at high altitudes with ARDS due to COVID-19
    Lima, David Rene Rodriguez
    Ramos, Cristhian Rubio
    Velasco, Andres Felipe Yepes
    Cortes, Leonardo Andres Gomez
    Rojas, Dario Isaias Pinilla
    Rondon, Angela Maria Pinzon
    Sternberg, angela Maria Ruiz
    PLOS ONE, 2023, 18 (10):
  • [38] Clinical stability and in-hospital mortality prediction in COVID-19 patients presenting to the Emergency Department
    Gavelli, Francesco
    Castello, Luigi M.
    Bellan, Mattia
    Azzolina, Danila
    Hayden, Eyal
    Beltrame, Michela
    Galbiati, Alessandra
    Gardino, Clara A.
    Gastaldello, Maria L.
    Giolitti, Francesca
    Labella, Emanuela
    Patrucco, Filippo
    Sainaghi, Pier P.
    Avanzi, Gian C.
    MINERVA MEDICA, 2021, 112 (01) : 118 - 123
  • [39] Arbidol is associated with increased in-hospital mortality among 109 patients with severe COVID-19: A multicenter, retrospective study
    Zhou, Xianlong
    Hou, Haifeng
    Yang, Luyu
    Ding, Guoyong
    Wei, Tao
    Li, Cancan
    Heng, Yuanyuan
    Liu, Ruining
    Ma, Min
    Hu, Zhuanzhuan
    Huang, Lei
    Xu, Xizhu
    Hu, Quan
    Zhao, Yan
    Xing, Weijia
    Zhao, Zhigang
    JOURNAL OF GLOBAL HEALTH, 2021, 11
  • [40] Prediction of in-hospital mortality with machine learning for COVID-19 patients treated with steroid and remdesivir
    Kuno, Toshiki
    Sahashi, Yuki
    Kawahito, Shinpei
    Takahashi, Mai
    Iwagami, Masao
    Egorova, Natalia N.
    JOURNAL OF MEDICAL VIROLOGY, 2022, 94 (03) : 958 - 964