Stability analysis of switched Markov jump linear systems with hybrid switchings

被引:0
|
作者
Yu, Qiang [1 ]
Li, Junzhou [1 ]
机构
[1] Shanxi Normal Univ, Sch Math & Comp Sci, Taiyuan 030031, Peoples R China
关键词
almost sure stability; Phi-dependent average dwell time; switched Markov jump linear system; NETWORKED CONTROL-SYSTEMS; FAULT-TOLERANT CONTROL; SURE STABILITY; DESIGN; STABILIZATION; STRATEGIES;
D O I
10.1002/asjc.3584
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the exponentially almost sure (EAS) stability of switched Markov jump linear systems (SMJLSs), which is subjected to deterministic switching and stochastic Markov jump switching. Using the ergodic law of large numbers, stability criteria for the SMJLS with all EAS stable or partially unstable sub-Markov jump linear systems are established, where the deterministic switching is governed by a Phi-dependent average dwell time approach. Some stability conditions under the average dwell time and mode-dependent average dwell time (MDADT) deterministic switching are established as corollaries. Especially, the results of MDADT for SMJLS are given for the first time. Finally, three numerical examples are provided to illustrate the efficiency of the proposed results.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Robust LQR for time-inhomogeneous Markov jump switched linear systems
    Lun, Yuriy Zacchia
    D'Innocenzo, Alessandro
    Di Benedetto, Maria Domencia
    IFAC PAPERSONLINE, 2017, 50 (01): : 2199 - 2204
  • [22] Regularity and stability analysis of discrete-time Markov jump linear singular systems
    Chavez-Fuentes, Jorge R.
    Costa, Eduardo F.
    Mayta, Jorge E.
    Terra, Marco H.
    AUTOMATICA, 2017, 76 : 32 - 40
  • [23] Impulsive Markov jump linear systems: Stability analysis and H2 control
    Souza, Matheus
    Fioravanti, Andre R.
    Araujo, Vanessa S. P.
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2021, 42
  • [24] Averaging and stability of stochastic systems with the fast Markov switchings
    Korolyuk, V.S.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 1993, (06):
  • [25] Stability of receding horizon control of Markov jump linear systems without jump observations
    Costa, EF
    do Val, JBR
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 4289 - 4293
  • [26] Input-Output Stochastic Stability for Markov Jump Linear Systems
    Costa, Eduardo F.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (01) : 635 - 641
  • [27] Robust stability of Markov jump linear systems through randomized evaluations
    Vargas, Alessandro N.
    Montezuma, Marcio A. F.
    Liu, Xinghua
    Oliveira, Ricardo C. L. F.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 : 287 - 294
  • [28] Design and Stability of Moving Horizon Estimator for Markov Jump Linear Systems
    Sun, Qing
    Lim, Cheng-Chew
    Shi, Peng
    Liu, Fei
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (03) : 1109 - 1124
  • [29] Robust stability of time-inhomogeneous Markov jump linear systems
    Lun, Yuriy Zacchia
    D'Innocenzo, Alessandro
    Di Benedetto, Maria Domenica
    IFAC PAPERSONLINE, 2017, 50 (01): : 3418 - 3423
  • [30] On the stability radii of continuous-time Markov jump linear systems
    Todorov, Marcos G.
    Fragoso, Marcelo D.
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 4621 - 4626