Grounding Ontologies with Pre-Trained Large Language Models for Activity Based Intelligence

被引:0
|
作者
Azim, Anee [1 ]
Clark, Leon [1 ]
Lau, Caleb [1 ]
Cobb, Miles [2 ]
Jenner, Kendall [1 ]
机构
[1] Lockheed Martin Australia, STELaRLab, Melbourne, Vic, Australia
[2] Lockheed Martin Space, Sunnyvale, CA USA
关键词
Activity Based Intelligence; Ontology; Large Language Model; Track Association;
D O I
10.1117/12.3013332
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The development of Activity Based Intelligence (ABI) requires an understanding of individual actors' intents, their interactions with other entities in the environment, and how these interactions facilitate accomplishment of their goals. Statistical modelling alone is insufficient for such analyses, mandating higher-level representations such as ontology to capture important relationships. However, constructing ontologies for ABI, ensuring they remain grounded to real-world entities, and maintaining their applicability to downstream tasks requires substantial hand-tooling by domain experts. In this paper, we propose the use of a Large Language Model (LLM) to bootstrap a grounding for such an ontology. Subsequently, we demonstrate that the experience encoded within the weights of a pre-trained LLM can be used in a zero-shot manner to provide a model of normalcy, enabling ABI analysis at the semantics level, agnostic to the precise coordinate data. This is accomplished through a sequence of two transformations, made upon a kinematic track, toward natural language narratives suitable for LLM input. The first transformation generates an abstraction of the low-level kinematic track, embedding it within a knowledge graph using a domain-specific ABI ontology. Secondly, we employ a template-driven narrative generation process to form natural language descriptions of behavior. Computation of the LLM perplexity score upon these narratives achieves grounding of the ontology. This use does not rely on any prompt engineering. In characterizing the perplexity score for any given track, we observe significant variability given chosen parameters such as sentence verbosity, attribute count, clause ordering, and so on. Consequently, we propose an approach that considers multiple generated narratives for an individual track and the distribution of perplexity scores for downstream applications. We demonstrate the successful application of this methodology against a semantic track association task. Our subsequent analysis establishes how such an approach can be used to augment existing kinematics-based association algorithms.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Prompt Tuning for Discriminative Pre-trained Language Models
    Yao, Yuan
    Dong, Bowen
    Zhang, Ao
    Zhang, Zhengyan
    Xie, Ruobing
    Liu, Zhiyuan
    Lin, Leyu
    Sun, Maosong
    Wang, Jianyong
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), 2022, : 3468 - 3473
  • [42] Impact of Morphological Segmentation on Pre-trained Language Models
    Westhelle, Matheus
    Bencke, Luciana
    Moreira, Viviane P.
    INTELLIGENT SYSTEMS, PT II, 2022, 13654 : 402 - 416
  • [43] A Close Look into the Calibration of Pre-trained Language Models
    Chen, Yangyi
    Yuan, Lifan
    Cui, Ganqu
    Liu, Zhiyuan
    Ji, Heng
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 1343 - 1367
  • [44] Deep Entity Matching with Pre-Trained Language Models
    Li, Yuliang
    Li, Jinfeng
    Suhara, Yoshihiko
    Doan, AnHai
    Tan, Wang-Chiew
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 14 (01): : 50 - 60
  • [45] A Survey of Knowledge Enhanced Pre-Trained Language Models
    Hu, Linmei
    Liu, Zeyi
    Zhao, Ziwang
    Hou, Lei
    Nie, Liqiang
    Li, Juanzi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (04) : 1413 - 1430
  • [46] Exploring Robust Overfitting for Pre-trained Language Models
    Zhu, Bin
    Rao, Yanghui
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 5506 - 5522
  • [47] Commonsense Knowledge Transfer for Pre-trained Language Models
    Zhou, Wangchunshu
    Le Bras, Ronan
    Choi, Yejin
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 5946 - 5960
  • [48] Self-conditioning Pre-Trained Language Models
    Suau, Xavier
    Zappella, Luca
    Apostoloff, Nicholas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [49] InA: Inhibition Adaption on pre-trained language models
    Kang, Cheng
    Prokop, Jindrich
    Tong, Lei
    Zhou, Huiyu
    Hu, Yong
    Novak, Daniel
    NEURAL NETWORKS, 2024, 178
  • [50] Leveraging Pre-trained Language Models for Gender Debiasing
    Jain, Nishtha
    Popovic, Maja
    Groves, Declan
    Specia, Lucia
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 2188 - 2195