Leveraging generative adversarial networks for data augmentation to improve fault detection in wind turbines with imbalanced data

被引:0
|
作者
Chatterjee, Subhajit [1 ]
Byun, Yung-Cheol [2 ]
机构
[1] Jeju Natl Univ, Dept Comp Engn, Jeju 63243, South Korea
[2] Jeju Natl Univ, Inst Informat Sci & Technol, Dept Comp Engn, Major Elect Engn, Jeju 63243, South Korea
基金
新加坡国家研究基金会;
关键词
Machine learning; Deep learning; Generative adversarial networks; Fault classification; Imbalanced data; Wind turbines; DIAGNOSIS;
D O I
10.1016/j.rineng.2025.103991
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the realm of modern power systems, wind turbines (WTs) have gained significant environmental advantages, making them pivotal in the expanding landscape of wind power generation. The paramount task of ensuring the effective monitoring and fault classification of WTs is indispensable for the stability of wind farm systems. Nevertheless, a formidable challenge arises from the need for more fault information gleaned from small fault data samples, resulting in data insufficiency and imbalance issues. The consequential impact of such imbalances on fault detection accuracy underscores the critical nature of the concern in wind turbine fault diagnostics. Notably, the disparity in dataset sizes among faults and the uneven distribution of fault classes pose a substantial obstacle in the realm of fault detection for wind turbines. This challenge is compounded by the time-intensive process required to amass sufficient fault data, setting it apart from more typical scenarios in the domain of wind turbines. This paper introduces an innovative approach employing Generative Adversarial Networks (GAN) for synthetic fault data generation to address these challenges effectively. This paper utilizes a Wasserstein Conditional Generative Adversarial Network (WC-GAN), which replaces the KL divergence in CGAN with the Wasserstein distance to rectify data imbalances by generating synthetic fault samples for wind turbine fault classification. This strategic manoeuvre balances the class distribution and enhances fault classification accuracy. Incorporating conditional data generation contributes to training stability and sample quality while utilising wasserstein distance ensures a faster convergence rate. Experimental validation conducted on Supervisory Control and Data Acquisition (SCADA) data for fault classification of wind turbines underscores the superiority of our method over other approaches, primarily attributed to the quality of conditionally generated samples. In essence, the proposed approach adeptly tackles the challenge of imbalanced samples by generating high-quality synthetic fault data, thereby elevating the efficacy of wind turbine fault classification.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Seismic Data Augmentation Based on Conditional Generative Adversarial Networks
    Li, Yuanming
    Ku, Bonhwa
    Zhang, Shou
    Ahn, Jae-Kwang
    Ko, Hanseok
    SENSORS, 2020, 20 (23) : 1 - 13
  • [42] Generative Adversarial Networks for Data Augmentation in Structural Adhesive Inspection
    Peres, Ricardo Silva
    Azevedo, Miguel
    Araujo, Sara Oleiro
    Guedes, Magno
    Miranda, Fabio
    Barata, Jose
    APPLIED SCIENCES-BASEL, 2021, 11 (07):
  • [43] Cancer classification with data augmentation based on generative adversarial networks
    Kaimin Wei
    Tianqi Li
    Feiran Huang
    Jinpeng Chen
    Zefan He
    Frontiers of Computer Science, 2022, 16
  • [44] Cancer classification with data augmentation based on generative adversarial networks
    WEI Kaimin
    LI Tianqi
    HUANG Feiran
    CHEN Jinpeng
    HE Zefan
    Frontiers of Computer Science, 2022, 16 (02)
  • [45] Data Augmentation for Voiceprint Recognition Using Generative Adversarial Networks
    Lin, Yao-San
    Chen, Hung-Yu
    Huang, Mei-Ling
    Hsieh, Tsung-Yu
    ALGORITHMS, 2024, 17 (12)
  • [46] A deep capsule neural network with data augmentation generative adversarial networks for single and simultaneous fault diagnosis of wind turbine gearbox
    Liang, Pengfei
    Deng, Chao
    Yuan, Xiaoming
    Zhang, Lijie
    ISA TRANSACTIONS, 2023, 135 : 462 - 475
  • [47] A full data augmentation pipeline for small object detection based on generative adversarial networks
    Bosquet, Brais
    Cores, Daniel
    Seidenari, Lorenzo
    Brea, Victor M.
    Mucientes, Manuel
    Del Bimbo, Alberto
    PATTERN RECOGNITION, 2023, 133
  • [48] An Intelligent Fault Diagnosis Method for Imbalanced Nuclear Power Plant Data Based on Generative Adversarial Networks
    Yuntao Dai
    Lizhang Peng
    Zhaobo Juan
    Yuan Liang
    Jihong Shen
    Shujuan Wang
    Sichao Tan
    Hongyan Yu
    Mingze Sun
    Journal of Electrical Engineering & Technology, 2023, 18 : 3237 - 3252
  • [49] An Intelligent Fault Diagnosis Method for Imbalanced Nuclear Power Plant Data Based on Generative Adversarial Networks
    Dai, Yuntao
    Peng, Lizhang
    Juan, Zhaobo
    Liang, Yuan
    Shen, Jihong
    Wang, Shujuan
    Tan, Sichao
    Yu, Hongyan
    Sun, Mingze
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2023, 18 (04) : 3237 - 3252
  • [50] Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks
    Sandfort, Veit
    Yan, Ke
    Pickhardt, Perry J.
    Summers, Ronald M.
    SCIENTIFIC REPORTS, 2019, 9 (1)