Monitoring the growth status of rice based on hyperspectral satellite remote sensing data

被引:0
|
作者
Li, Yindong [1 ]
Chen, Yang [2 ]
Wang, Wang [1 ]
机构
[1] Geely Univ China, Sch Aeronaut & Astronaut, Chengdu 641423, Sichuan, Peoples R China
[2] Geely Univ China, Sch Art & Design, Chengdu 641423, Sichuan, Peoples R China
关键词
Rice; Chlorophyll; Hyperspectral Remote Sensing; 3D-CNN; Growth Monitoring; TIME-SERIES; CROPS;
D O I
10.15837/ijccc.2025.1.6910
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study proposes a novel approach to rice growth monitoring using a 3D Convolutional Neural Network (3D-CNN) model applied to hyperspectral satellite remote sensing data. The model combines spatial, temporal, and spectral information processing to enhance the accuracy of rice growth monitoring over large areas. A new loss function is introduced to address imbalanced yield label distribution. The model's performance is validated using rice yield data from China's main rice-growing regions, demonstrating superior predictive capability compared to existing methods. This approach offers a promising tool for improving food security through more accurate and timely crop monitoring.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Hyperspectral remote sensing for light pollution monitoring
    Barducci, Alessandro
    Benvenuti, Marco
    Bonora, Laura
    Castagnoli, Francesco
    Guzzi, Donatella
    Marcoionni, Paolo
    Pippi, Ivan
    ANNALS OF GEOPHYSICS, 2006, 49 (01) : 305 - 310
  • [22] Estimation of Crop Growth Parameters Using UAV-Based Hyperspectral Remote Sensing Data
    Tao, Huilin
    Feng, Haikuan
    Xu, Liangji
    Miao, Mengke
    Long, Huiling
    Yue, Jibo
    Li, Zhenhai
    Yang, Guijun
    Yang, Xiaodong
    Fan, Lingling
    SENSORS, 2020, 20 (05)
  • [23] Hyperspectral Remote Sensing Monitoring of Grassland Degradation
    Wang Huan-jiong
    Fan Wen-jie
    Cui Yao-kui
    Zhou Lei
    Yan Bin-yan
    Wu Dai-hui
    Xu Xi-ru
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2010, 30 (10) : 2734 - 2738
  • [24] Current Status of Hyperspectral Remote Sensing: Principle, Data Processing Techniques, and Applications
    Kim, Sun-Hwa
    Lee, Kyu-Sung
    Ma, Jung-Rim
    Kook, Min-Jung
    KOREAN JOURNAL OF REMOTE SENSING, 2005, 21 (04) : 341 - 369
  • [25] IMPROVED CLASSIFICATION OF MANGROVES HEALTH STATUS USING HYPERSPECTRAL REMOTE SENSING DATA
    Vidhya, R.
    Vijayasekaran, D.
    Farook, M. Ahamed
    Jai, S.
    Rohini, M.
    Sinduja, A.
    ISPRS TECHNICAL COMMISSION VIII SYMPOSIUM, 2014, 40-8 : 667 - 670
  • [26] Winter Wheat Seedtime Monitoring through Satellite Remote Sensing Data
    Song, Xiaoyu
    Huang, Wenjiang
    Cui, Bei
    Zhou, Jihong
    COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE V, PT III, 2012, 370 : 362 - +
  • [27] A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing
    Udelhoven, Thomas
    Schlerf, Martin
    Segl, Karl
    Mallick, Kaniska
    Bossung, Christian
    Retzlaff, Rebecca
    Rock, Gilles
    Fischer, Peter
    Mueller, Andreas
    Storch, Tobias
    Eisele, Andreas
    Weise, Dennis
    Hupfer, Werner
    Knigge, Thiemo
    SENSORS, 2017, 17 (07):
  • [28] Monitoring of soil heavy metals based on hyperspectral remote sensing: A review
    Wang, Yulong
    Zou, Bin
    Chai, Liyuan
    Lin, Zhang
    Feng, Huihui
    Tang, Yuqi
    Tian, Rongcai
    Tu, Yulong
    Zhang, Bo
    Zou, Haijing
    EARTH-SCIENCE REVIEWS, 2024, 254
  • [29] Monitoring and classification of citrus Huanglongbing based on UAV hyperspectral remote sensing
    Lan Y.
    Zhu Z.
    Deng X.
    Lian B.
    Huang J.
    Huang Z.
    Hu J.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2019, 35 (03): : 92 - 100
  • [30] Regional monitoring of forest vegetation using airborne hyperspectral remote sensing data
    Dmitriev, Egor V.
    Kozoderov, Vladimir V.
    Kondranin, Timophey V.
    Sokolov, Anton A.
    MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL REMOTE SENSING TECHNOLOGY, TECHNIQUES AND APPLICATIONS V, 2014, 9263