Monitoring the growth status of rice based on hyperspectral satellite remote sensing data

被引:0
|
作者
Li, Yindong [1 ]
Chen, Yang [2 ]
Wang, Wang [1 ]
机构
[1] Geely Univ China, Sch Aeronaut & Astronaut, Chengdu 641423, Sichuan, Peoples R China
[2] Geely Univ China, Sch Art & Design, Chengdu 641423, Sichuan, Peoples R China
关键词
Rice; Chlorophyll; Hyperspectral Remote Sensing; 3D-CNN; Growth Monitoring; TIME-SERIES; CROPS;
D O I
10.15837/ijccc.2025.1.6910
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study proposes a novel approach to rice growth monitoring using a 3D Convolutional Neural Network (3D-CNN) model applied to hyperspectral satellite remote sensing data. The model combines spatial, temporal, and spectral information processing to enhance the accuracy of rice growth monitoring over large areas. A new loss function is introduced to address imbalanced yield label distribution. The model's performance is validated using rice yield data from China's main rice-growing regions, demonstrating superior predictive capability compared to existing methods. This approach offers a promising tool for improving food security through more accurate and timely crop monitoring.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Remote sensing monitoring of rice growth under Cnaphalocrocis medinalis (Guenée) damage by integrating satellite and UAV remote sensing data
    Chen, Chen
    Bao, Yunxuan
    Zhu, Feng
    Yang, Rongming
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (03) : 772 - 790
  • [2] Satellite remote sensing and crop growth monitoring
    Nieuwenhuis, GJA
    Mucher, CA
    FUTURE TRENDS IN REMOTE SENSING, 1998, : 251 - 262
  • [3] Monitoring Canopy Nitrogen Status in Winter Wheat of Growth Anaphase with Hyperspectral Remote Sensing
    Tang Qiang
    Li Shao-kun
    Wang Ke-ru
    Xie Rui-zhi
    Chen Bing
    Wang Fang-yong
    Diao Wan Ying
    Xiao Chun Hua
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2010, 30 (11) : 3061 - 3066
  • [4] Monitoring leaf pigment status with hyperspectral remote sensing in wheat
    Feng, Wei
    Yao, Xia
    Tian, Yongchao
    Cao, Weixing
    Zhu, Yan
    AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, 2008, 59 (08): : 748 - 760
  • [5] MONITORING LEAF AREA INDEX AFTER HEADING STAGE USING HYPERSPECTRAL REMOTE SENSING DATA IN RICE
    He, Jiaoyang
    Qin, Yehui
    Guo, Caili
    Zhao, Liyun
    Zhou, Xiang
    Yao, Xia
    Cheng, Tao
    Tian, Yongchao
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6284 - 6287
  • [6] Monitoring an invasive plant using hyperspectral remote sensing data
    Wan H.
    Wang C.
    Li Y.
    Wang Q.
    Li J.
    Liu X.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2010, 26 (SUPPL. 2): : 59 - 63
  • [7] Estimating Rice Nitrogen Status with Satellite Remote Sensing in Northeast China
    Huang, Shanyu
    Miao, Yuxin
    Zhao, Guangming
    Ma, Xiaobo
    Tan, Chuanxiang
    Huang, Shanyu
    Bareth, Georg
    Rascher, Uwe
    Yuan, Fei
    2013 SECOND INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2013, : 548 - 553
  • [8] Current Status of Satellite Remote Sensing-Based Methane Emission Monitoring Technologies
    Kim, Minju
    Park, Jeongwoo
    Hyun, Chang-Uk
    ECONOMIC AND ENVIRONMENTAL GEOLOGY, 2024, 57 (05): : 513 - 527
  • [9] QUANTUM DEEP HYPERSPECTRAL SATELLITE REMOTE SENSING
    Lin, Chia-Hsiang
    Chen, You-Yao
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7316 - 7319
  • [10] Satellite remote sensing of wild rice
    Frohn, RC
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 1634 - 1635