Direct numerical simulation of supersonic turbulent boundary layers subject to a micro-suction duct

被引:0
|
作者
Xiao, Ting [1 ]
Wu, Xiaoshuai [2 ]
Zhao, Yuxin [1 ]
机构
[1] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Dept Appl Mech, Changsha 410073, Hunan, Peoples R China
[2] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Hyperson Technol Lab, Changsha 410073, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
INFLOW DATA; GENERATION;
D O I
10.1063/5.0251986
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Wall suction via micro ducts is one promising approach of turbulence control in practical engineering and involves a series of fundamental issues that urgently need to be resolved. Presently, direct numerical simulation (DNS) is employed to study the supersonic turbulent boundary layers subjected to a micro-suction duct, with the aim of unveiling the inner-outer coupling of micro-flows. The analyses are made by exploiting the parametric DNS datasets based on tuning the back pressure prescribed at the duct exit. Numerical results demonstrate that the micro-duct, although with size one-order of magnitude smaller than boundary layer thickness, can actually cause considerable three-dimensional modification to the passing turbulence. The local mean flow highlights the existence of a leading ellipsoid-shaped vortex weakly connected to a pair of counter-rotating vortex (CRV) legs, situated downstream the suction orifice. Above the suction orifice, interestingly the peaks of turbulence intensity residing the buffer layer are moderately depressed, while the fluctuations underneath are notably energized, with the appearance of crossover trend between two positions. In the downstream, examining the relative differences of Reynolds normal stresses reveals the coexisting regions wherein the streamwise component is suppressed while the wall-normal and spanwise components are amplified. This is the evidence that CRV legs tend to enforce the energy redistribution from the streamwise direction toward the transverse counterparts. Detailed temporal spectra further point to that the suction induces a new kind of low-frequency unsteadiness, with the dominant mode of pressure fluctuations shifting toward lower temporal frequencies.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] Turbulent asymptotic suction boundary layers studied by simulation
    Schlatter, Philipp
    Orlu, Ramis
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): WALL-BOUNDED FLOWS AND CONTROL OF TURBULENCE, 2011, 318
  • [12] Direct numerical simulation of a supersonic turbulent boundary layer subjected to a concave surface
    Wu, Xiaoshuai
    Liang, Jianhan
    Zhao, Yuxin
    PHYSICAL REVIEW FLUIDS, 2019, 4 (04)
  • [13] Direct Numerical Simulation of Supersonic Turbulent Boundary Layer with Spanwise Wall Oscillation
    Ni, Weidan
    Lu, Lipeng
    Le Ribault, Catherine
    Fang, Jian
    ENERGIES, 2016, 9 (03)
  • [14] Direct numerical simulation of the supersonic turbulent boundary layer of supercritical carbon dioxide
    Wang, Jinhong
    Yang, Bijie
    Martinez-Botas, Ricardo
    Cao, Teng
    PHYSICS OF FLUIDS, 2025, 37 (02)
  • [15] Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp
    Wu, M.
    Martin, M. P.
    AIAA JOURNAL, 2007, 45 (04) : 879 - 889
  • [16] Direct numerical simulation of stable and unstable turbulent thermal boundary layers
    Hattori, Hirofumi
    Houra, Tomoya
    Nagano, Yasutaka
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2007, 28 (06) : 1262 - 1271
  • [17] Inflow conditions for spatial direct numerical simulation of turbulent boundary layers
    Huang ZhangFeng
    Zhou Heng
    SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2008, 51 (08): : 1106 - 1115
  • [18] Inflow conditions for spatial direct numerical simulation of turbulent boundary layers
    ZhangFeng Huang
    Heng Zhou
    Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51 : 1106 - 1115
  • [19] Inflow conditions for spatial direct numerical simulation of turbulent boundary layers
    HUANG ZhangFeng & ZHOU Heng Department of Mechanics
    Liu-Hui Center of Applied Mathematics
    Science China(Physics,Mechanics & Astronomy), 2008, (08) : 1106 - 1115
  • [20] Direct numerical simulation of adverse pressure gradient turbulent boundary layers
    Skote, M
    Henningson, DS
    ADVANCES IN TURBULENCE VII, 1998, 46 : 171 - 174