Spin one matter fields

被引:0
|
作者
Daniel O. R. Azevedo [1 ]
Oswaldo M. Del Cima [1 ]
Thadeu D. S. Dias [1 ]
Daniel H. T. Franco [1 ]
Emílio D. Pereira [1 ]
Olivier Piguet [1 ]
机构
[1] Universidade Federal de Viçosa,Departamento de Física
来源
关键词
D O I
10.1140/epjc/s10052-025-14045-9
中图分类号
学科分类号
摘要
It is shown how spin one vector matter fields can be coupled to a Yang–Mills theory. Such matter fields are defined as belonging to a representation R of this Yang–Mills gauge algebra g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {g}$$\end{document}. It is also required that these fields together with the original gauge fields be the gauge fields of an embedding total gauge algebra gtot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {g}_{\textrm{tot}}$$\end{document}. The existence of a physically consistent Yang–Mills action for the total algebra is finally required. These conditions are rather restrictive, as shown in some examples: non-trivial solutions may or may not exist depending on the choice of the original algebra g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {g}$$\end{document} and of the representation R. Some examples are shown, the case of the initial algebra g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {g}$$\end{document} = u(1)⊕su(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {u}(1)\oplus \mathfrak {su}(2)$$\end{document} being treated in more detail.
引用
收藏
相关论文
共 50 条
  • [21] Mass dimension one fields with Wigner degeneracy: A theory of dark matter
    Ahluwalia, Dharam Vir
    da Silva, Julio M. Hoff
    Lee, Cheng-Yang
    NUCLEAR PHYSICS B, 2023, 987
  • [22] Wald type analysis for spin-one fields in three dimensions
    Bera, Nabarun
    Das, Suchetan
    Ezhuthachan, Bobby
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (04):
  • [23] Canonical quantization of spin 1 matter fields. Preliminary results.
    Ferro-Hernandez, Rodolfo
    Napsuciale, Mauro
    XIV MEXICAN WORKSHOP ON PARTICLES AND FIELDS, 2015, 651
  • [24] Adiabatic regularization and particle creation for spin one-half fields
    Landete, Aitor
    Navarro-Salas, Jose
    Torrenti, Francisco
    PHYSICAL REVIEW D, 2014, 89 (04)
  • [25] Wald type analysis for spin-one fields in three dimensions
    Nabarun Bera
    Suchetan Das
    Bobby Ezhuthachan
    Journal of High Energy Physics, 2017
  • [26] Comparative Aspects of Spin-Dependent Interaction Potentials for Spin-1/2 and Spin-1 Matter Fields
    Malta, P. C.
    Ospedal, L. P. R.
    Veiga, K.
    Helayel-Neto, J. A.
    ADVANCES IN HIGH ENERGY PHYSICS, 2017, 2017
  • [27] Comparative Aspects of Spin-Dependent Interaction Potentials for Spin-1/2 and Spin-1 Matter Fields
    Malta, P. C.
    Ospedal, L. P. R.
    Veiga, K.
    Helayel-Neto, J. A.
    ADVANCES IN HIGH ENERGY PHYSICS, 2016, 2016
  • [28] Conformal higher-spin symmetry for matter fields in 2+1 dimensions
    Vasiliev, MA
    Shaynkman, OV
    THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 128 (03) : 1155 - 1168
  • [29] Conformal Higher-Spin Symmetry for Matter Fields in 2+1 Dimensions
    M. A. Vasiliev
    O. V. Shaynkman
    Theoretical and Mathematical Physics, 2001, 128 : 1155 - 1168
  • [30] Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields
    Abel, C.
    Ayres, N. J.
    Ban, G.
    Bison, G.
    Bodek, K.
    Bondar, V.
    Daum, M.
    Fairbairn, M.
    Flambaum, V. V.
    Geltenbort, P.
    Green, K.
    Griffith, W. C.
    van der Grinten, M.
    Grujic, Z. D.
    Harris, P. G.
    Hild, N.
    Iaydjiev, P.
    Ivanov, S. N.
    Kasprzak, M.
    Kermaidic, Y.
    Kirch, K.
    Koch, H. -C.
    Komposch, S.
    Koss, P. A.
    Kozela, A.
    Krempel, J.
    Lauss, B.
    Lefort, T.
    Lemiere, Y.
    Marsh, D. J. E.
    Mohanmurthy, P.
    Mtchedlishvili, A.
    Musgrave, M.
    Piegsa, F. M.
    Pignol, G.
    Rawlik, M.
    Rebreyend, D.
    Ries, D.
    Roccia, S.
    Rozpedzik, D.
    Schmidt-Wellenburg, P.
    Severijns, N.
    Shiers, D.
    Stadnik, Y. V.
    Weis, A.
    Wursten, E.
    Zejma, J.
    Zsigmond, G.
    PHYSICAL REVIEW X, 2017, 7 (04):