共 50 条
Optimal Chromatic Bound for (P3 ∨ P2, House)-Free Graphs
被引:0
|作者:
Li, Rui
[1
]
Li, Jinfeng
[1
]
Wu, Di
[2
]
机构:
[1] Hohai Univ, Sch Math, 8 West Focheng Rd, Nanjing 211100, Peoples R China
[2] Nanjing Inst Technol, Dept Math & Phys, 1 Hongjing Ave, Nanjing 211167, Peoples R China
关键词:
Chromatic number;
Clique number;
chi-binding function;
(P-3 boolean OR P-2)- freegraphs;
CHI;
D O I:
10.1007/s00373-025-02894-w
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let F and H be two vertex disjoint graphs. The union F U H is the graph with V(F boolean OR H) = V(F) boolean OR V(H) and E(F boolean OR H) = E(F) boolean OR E(H). We use P-k to denote a path on k vertices and use house to denote the complement of P-5 . In this paper, we show that if G is a (P-3 boolean OR P-2 , house)-free graph, then chi(G) <= 2 omega (G) . Moreover, this bound is optimal when omega(G) >= 2.
引用
收藏
页数:15
相关论文