Predicting the body weight of crossbred Holstein x Zebu dairy cows using multivariate adaptive regression splines algorithm

被引:1
|
作者
Vazquez-Martinez, Ignacio [1 ,2 ]
Tirink, Cem [3 ]
Casanova-Lugo, Fernando [4 ]
Pozo-Leyva, Dixan [4 ]
Mota-Rojas, Daniel [5 ]
Kalmagambetov, Murat Baitugelovich [6 ]
Uskenov, Rashit [7 ]
Gulboy, Omer [8 ]
Garcia-Herrera, Ricardo A. [1 ]
Chay-Canul, Alfonso J. [1 ]
机构
[1] Univ Juarez Autonoma Tabasco, Div Acade Ciencias Agr, Villahermosa, Tabasco, Mexico
[2] Benemerita Univ Autonoma Puebla, Complejo Reg Norte, Tetela De Ocampo, Puebla, Mexico
[3] Igdir Univ, Fac Agr, Dept Anim Sci, TR-76000 Igdir, Turkiye
[4] Tecnol Nacl Mexico, Inst Tecnol Zona Maya, Othon P Blanco, Quintana Roo, Mexico
[5] Univ Autonoma Metropolitana, Dept Anim Prod & Agr DPAA, Neurophysiol Behav & Anim Welf Assessment, Xochimilco Campus, Mexico City 04960, Mexico
[6] Aktobe Agr Expt Stn, Aktobe, Kazakhstan
[7] S Seifullin Kazakh Agrotech Univ, Agron Fac, Z10P6B8,62 Zhenis Ave, Astana, Kazakhstan
[8] Ondokuz Mayis Univ, Fac Agr, Dept Anim Sci, TR-55139 Samsun, Turkiye
关键词
Body measurements; body weight; crossbred; multivariate adaptive regression splines (MARS); tropical cows; LIVE WEIGHT;
D O I
10.1017/S0022029924000578
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
This study aimed to estimate live body weight from body measurements for Holstein x Zebu dairy cows (n = 156) reared under conditions of humid tropics in Mexico using multivariate adaptive regression splines algorithm (MARS) with several train-test proportions. The body measurements included withers height, rump height, hip width, heart girth, body length and diagonal body length. The data were divided into 65:35, 70:30 and 80:20 split data for training and testing sets, respectively. The MARS algorithm was used to construct a prediction model, which predicted the body weight from the body measurements of the test dataset. The results emphasized that the MARS algorithm had an explanation rate for 80:20 train and test set of 0.836 and 0.711, respectively, with minimum Akaike information criterion values. This indicates that it is a reliable way of predicting body weight from body measurements. The results suggest that body weight prediction can be performed with the MARS algorithm in a reliable way, therefore, this algorithm may be a useful tool for animal breeders and researchers in the development of feeding and selection-aimed approaches.
引用
收藏
页码:267 / 272
页数:6
相关论文
共 39 条
  • [31] A preliminarily study for predicting body weight and milk properties in lactating Holstein cows using a three-dimensional camera system
    Kuzuhara, Yukako
    Kawamura, Kensuke
    Yoshitoshi, Rena
    Tamaki, Toru
    Sugai, Shun
    Ikegami, Mai
    Kurokawa, Yuzo
    Obitsu, Taketo
    Okita, Miki
    Sugino, Toshihisa
    Yasuda, Taisuke
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2015, 111 : 186 - 193
  • [32] Comparison of Bayesian Regularized Neural Network, Random Forest Regression, Support Vector Regression and Multivariate Adaptive Regression Splines Algorithms to Predict Body Weight from Biometrical Measurements in Thalli Sheep
    Tirink, Cem
    KAFKAS UNIVERSITESI VETERINER FAKULTESI DERGISI, 2022, 28 (03) : 411 - 419
  • [33] MD-MARS: Maintainability Framework Based on Data Flow Prediction Using Multivariate Adaptive Regression Splines Algorithm in Wireless Sensor Network
    Pundir, Meena
    Sandhu, Jasminder Kaur
    Gupta, Deepali
    Gupta, Punit
    Juneja, Sapna
    Nauman, Ali
    Mahmoud, Amena
    IEEE ACCESS, 2023, 11 : 10604 - 10622
  • [34] A new method for monthly streamflow prediction using multi-source data: range-dependent multivariate adaptive regression splines-genetic algorithm
    Idowu, Mariam
    Kulls, Christoph
    Kisi, Ozgur
    HYDROLOGICAL SCIENCES JOURNAL, 2024, 69 (13) : 1860 - 1880
  • [35] Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques
    Mansouri, Iman
    Ozbakkaloglu, Togay
    Kisi, Ozgur
    Xie, Tianyu
    MATERIALS AND STRUCTURES, 2016, 49 (10) : 4319 - 4334
  • [36] Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques
    Iman Mansouri
    Togay Ozbakkaloglu
    Ozgur Kisi
    Tianyu Xie
    Materials and Structures, 2016, 49 : 4319 - 4334
  • [37] Volume and surface area of Holstein dairy cows calculated from complete 3D shapes acquired using a high-precision scanning system: Interest for body weight estimation
    Le Cozler, Y.
    Allain, C.
    Xavier, C.
    Depuille, L.
    Caillot, A.
    Delouard, J. M.
    Delattre, L.
    Luginbuhl, T.
    Faverdin, P.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 165
  • [38] Using fat thickness and longissimus thoracis traits real-time ultrasound measurements in Black Belly ewe lambs to predict carcass tissue composition through multiresponse multivariate adaptive regression splines algorithm
    Munoz-Osorio, Germani Adrian
    Tirink, Cem
    Tyasi, Thobela Louis
    Ramirez-Bautista, Marco Antonio
    Cruz-Tamayo, Alvar Alonzo
    Dzib-Cauich, Dany Alejandro
    Garcia-Herrera, Ricardo A.
    Chay-Canul, Alfonso J.
    MEAT SCIENCE, 2024, 207
  • [39] Principal component analysis-multivariate adaptive regression splines (PCA-MARS) and back propagation-artificial neural network (BP-ANN) methods for predicting the efficiency of oxidative desulfurization systems using ATR-FTIR spectroscopy
    Sadrara, Mina
    Khorrami, Mohammadreza Khanmohammadi
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2023, 300