PDS-UAV: A Deep Learning-Based Pothole Detection System Using Unmanned Aerial Vehicle Images

被引:1
|
作者
Alzamzami, Ohoud [1 ]
Babour, Amal [2 ]
Baalawi, Waad [1 ]
Al Khuzayem, Lama [1 ]
机构
[1] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Comp Sci, Jeddah 21589, Saudi Arabia
[2] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Informat Syst, Jeddah 21589, Saudi Arabia
关键词
smart city; intelligent transportation systems; pothole detection; deep learning; YOLOv8;
D O I
10.3390/su16219168
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Smart cities utilize advanced technologies to enhance quality of life by improving urban services, infrastructure, and environmental sustainability. Effective pothole detection and repair strategies are essential for improving quality of life as they directly impact the comfort and safety of road users. In addition to causing serious harm to residents' lives, potholes can also cause costly vehicle damage. In this study, a pothole detection system utilizing unmanned aerial vehicles, called PDS-UAV, is developed. The system aids in automatically detecting potholes using deep learning techniques and managing their status and repairs. In addition, it allows road users to view an overlay of the detected potholes on the maps based on their selected route, enabling them to avoid the potholes and increase their safety on the roads. Two data collection methods were used, an interview and a questionnaire, to gather data from the target system users. Based on the data analysis, the system's requirements, design, and implementation were completed. For the pothole detection, a deep learning model using YOLOv8 was developed, which achieved an overall performance of 95%, 98%, and 92% for F1 score, precision, and recall, respectively. Different types of testing has been performed on the target users to ensure the system's validity, effectiveness, and ease of use, including unit testing, integration testing, and usability testing. As a future work, more features will be added to the system in addition to improving the deep learning model accuracy.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Unmanned aerial vehicle images in the machine learning for agave detection
    Escobar-Flores, Jonathan Gabriel
    Sandoval, Sarahi
    Gamiz-Romero, Eduardo
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (41) : 61662 - 61673
  • [32] Unmanned aerial vehicle images in the machine learning for agave detection
    Jonathan Gabriel Escobar-Flores
    Sarahi Sandoval
    Eduardo Gámiz-Romero
    Environmental Science and Pollution Research, 2022, 29 : 61662 - 61673
  • [33] Object Detection and Trajectory Prediction of Unmanned Aerial Vehicle Using Deep Learning
    Aote, Shailendra S.
    Panpaliya, Samiksha
    Hedaoo, Nilanshu
    Mane, Shantanu
    Pathak, Sagar
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 2, SMARTCOM 2024, 2024, 946 : 225 - 235
  • [34] Automatic Segmentation of Mauritia flexuosa in Unmanned Aerial Vehicle (UAV) Imagery Using Deep Learning
    Morales, Giorgio
    Kemper, Guillermo
    Sevillano, Grace
    Arteaga, Daniel
    Ortega, Ivan
    Telles, Joel
    FORESTS, 2018, 9 (12):
  • [35] A Deep Learning Model for Automatic Plastic Mapping Using Unmanned Aerial Vehicle (UAV) Data
    Jakovljevic, Gordana
    Govedarica, Miro
    Alvarez-Taboada, Flor
    REMOTE SENSING, 2020, 12 (09)
  • [36] DEGNN: A Deep Learning-Based Method for Unmanned Aerial Vehicle Software Security Analysis
    Du, Jiang
    Wei, Qiang
    Wang, Yisen
    Bai, Xingyu
    DRONES, 2025, 9 (02)
  • [37] Highway Crack Segmentation From Unmanned Aerial Vehicle Images Using Deep Learning
    Hong, Zhonghua
    Yang, Fan
    Pan, Haiyan
    Zhou, Ruyan
    Zhang, Yun
    Han, Yanling
    Wang, Jing
    Yang, Shuhu
    Chen, Peng
    Tong, Xiaohua
    Liu, Jun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [38] A Deep Learning Approach on Building Detection from Unmanned Aerial Vehicle-Based Images in Riverbank Monitoring
    Boonpook, Wuttichai
    Tan, Yumin
    Ye, Yinghua
    Torteeka, Peerapong
    Torsri, Kritanai
    Dong, Shengxian
    SENSORS, 2018, 18 (11)
  • [39] Automatic recognition of construction waste based on unmanned aerial vehicle images and deep learning
    Cheng, Pengjian
    Pei, Zhongshi
    Chen, Yuheng
    Zhu, Xin
    Xu, Meng
    Fan, Lulu
    Yi, Junyan
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2025, 27 (01) : 530 - 543
  • [40] Vehicle detection on unmanned aerial vehicle images based on saliency region detection
    Li W.
    Qu F.
    Liu P.
    International Journal of Performability Engineering, 2019, 15 (02): : 688 - 699