On the asymptotic behavior of solutions to bilinear Caputo stochastic fractional differential equations

被引:0
|
作者
Huong, P. T. [1 ]
Anh, P. T. [1 ]
机构
[1] Le Quy Don Tech Univ, Dept Math, 236 Hoang Quoc Viet, Hanoi, Vietnam
关键词
Stochastic fractional differential equations; Stochastic Volterra equations; Fractional calculus; Caputo derivative; Asymptotic behavior; Stability in the mean square sense;
D O I
10.1016/j.spl.2024.110272
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we focus on investigating the asymptotic behavior of solutions in a mean square sense to bilinear Caputo stochastic fractional differential equations (CSFDEs). The main tools in the proof include a variation of the constant formula for CSFDEs, the Jordan normal form of a matrix, the summation formula of Djrbashian type, and constructing a weighted norm in the associated Banach space.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A note on the continuity for Caputo fractional stochastic differential equations
    Wang, Wenya
    Cheng, Shuilin
    Guo, Zhongkai
    Yan, Xingjie
    CHAOS, 2020, 30 (07)
  • [22] PRV property and the ϕ-asymptotic behavior of solutions of stochastic differential equations
    V. V. Buldygin
    O. I. Klesov
    J. G. Steinebach
    Lithuanian Mathematical Journal, 2007, 47 : 361 - 378
  • [23] Asymptotic Behavior of the Solutions of Stochastic Functional-Differential Equations
    Stanzhytskyi O.M.
    Petryna G.O.
    Denysenko N.L.
    Journal of Mathematical Sciences, 2024, 278 (6) : 1102 - 1112
  • [24] ON THE ASYMPTOTIC-BEHAVIOR OF SOLUTIONS TO STOCHASTIC DIFFERENTIAL-EQUATIONS
    KELLER, G
    KERSTING, G
    ROSLER, U
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1985, 19 (01) : 22 - 22
  • [25] PRV property and the φ-asymptotic behavior of solutions of stochastic differential equations
    Buldygin, V. V.
    Klesov, O. I.
    Steinebach, J. G.
    LITHUANIAN MATHEMATICAL JOURNAL, 2007, 47 (04) : 361 - 378
  • [26] ON THE ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL-EQUATIONS
    KELLER, G
    KERSTING, G
    ROSLER, U
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 68 (02): : 163 - 189
  • [27] Well-posedness and regularity for solutions of Caputo stochastic fractional delay differential equations
    Huong, P. T.
    The, N. T.
    STATISTICS & PROBABILITY LETTERS, 2023, 195
  • [28] Asymptotic Behavior of Solutions to Abstract Stochastic Fractional Partial Integrodifferential Equations
    Zhao, Zhi-Han
    Chang, Yong-Kui
    Nieto, Juan J.
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [29] STABILITY OF SOLUTIONS TO IMPULSIVE CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS
    Agarwal, Ravi
    Hristova, Snezhana
    O'Regan, Donal
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [30] A NOTE ON THE EXISTENCE OF SOLUTIONS FOR CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS
    Islam, Muhammad N.
    Koyuncuoglu, Halis Can
    Raffoul, Youssef N.
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2024, 36 (04) : 437 - 446