Special Affine Fourier Transform on Tempered Distribution and Its Application

被引:0
|
作者
Kumar, Manish [1 ]
Bhawna [1 ]
机构
[1] Birla Inst Technol & Sci Pilani, Dept Math, Hyderabad Campus, Hyderabad, Telangana, India
关键词
generalized telegraph equation; generalized wave equation; pseudo-differential operators; special affine Fourier transform; Schwartz space; Sobolev space; FRACTIONAL FOURIER; PSEUDODIFFERENTIAL OPERATOR; EIGENFUNCTIONS;
D O I
10.1002/mma.10657
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main aim of this work is to develop a theoretical framework for generalized pseudo-differential operators involving the special affine Fourier transform (SAFT), associated with a symbol delta(mu,eta)$$ \delta \left(\mu, \eta \right) $$. Some important properties of the SAFT are established, and it is proved that the product of two generalized pseudo-differential operators is shown to be a generalized pseudo-differential operator. Further, we explore the practical applications of the SAFT in solving generalized partial differential equations, such as the generalized telegraph and wave equations, providing closed-form solutions. Furthermore, graphical visualizations for these solutions are illustrated via MATLAB R2023b.
引用
收藏
页码:6092 / 6102
页数:11
相关论文
共 50 条
  • [31] Short-time special affine Fourier transform for quaternion-valued functions
    Srivastava, H. M.
    Shah, Firdous A.
    Teali, Aajaz A.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (02)
  • [32] Short-time special affine Fourier transform for quaternion-valued functions
    H. M. Srivastava
    Firdous A. Shah
    Aajaz A. Teali
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [33] The Fourier transform for p-adic tempered distributions
    De Grande-De Kimpe, N
    Khrennikov, A
    van Hamme, L
    P-ADIC FUNCTIONAL ANALYSIS, 1999, 207 : 97 - 112
  • [35] Pan-linear Distribution and Its Fourier Transform
    崔成日
    郭立强
    朴青松
    延边大学学报(自然科学版), 2008, (01) : 1 - 3
  • [36] Fourier transform of self-affine measures
    Li, Jialun
    Sahlsten, Tuomas
    ADVANCES IN MATHEMATICS, 2020, 374
  • [37] Sampling and reconstruction of multi-dimensional bandlimited signals in the special affine Fourier transform domain
    Gao, Ni
    Jiang, Yingchun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (07) : 6060 - 6078
  • [38] Probabilistic Entropy and Other Uncertainty Principles for the Multi-dimensional Special Affine Fourier Transform
    Dar, Aamir H.
    Bhat, M. Younus
    Alshanbari, Huda M.
    Albalawi, Olayan
    Dar, Javid G.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2025, : 3490 - 3512
  • [39] SYMMETRIC TERNARY QUANTUM FOURIER TRANSFORM AND ITS APPLICATION
    Dong, Hao
    Lu, Dayong
    Sun, Xiaoyun
    QUANTUM INFORMATION & COMPUTATION, 2022, 22 (9-10) : 733 - 754
  • [40] Frequency modified Fourier transform and its application to asteroids
    Sidlichovsky, M
    Nesvorny, D
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1996, 65 (1-2): : 137 - 148