pff-oc: A space-time phase-field fracture optimal control framework

被引:0
|
作者
Khimin, Denis [1 ]
Steinbach, Marc Christian [1 ]
Wick, Thomas [1 ]
机构
[1] Leibniz Univ Hannover, Inst Angew Math, Welfengarten 1, D-30167 Hannover, Germany
关键词
C++; Applied mathematics; Space-time; Phase-field fracture; Optimal control; DOpElib; deal.II; OPTIMIZATION; MODELS;
D O I
10.1016/j.simpa.2024.100734
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This codebase is developed to address optimal control problems in phase-field fracture, aiming to achieve a desired fracture pattern in brittle materials through the application of external forces. Built alongside our recent work (Khimin et al., 2022), this framework provides an efficient and precise approach for simulating space-time phase-field optimal control problems. In this setup, the fracture is controlled via Neumann boundary conditions, with the cost functional designed to minimize the difference between the actual and desired fracture states. The implementation relies on the open-source libraries DOpElib (Goll et al., 2017) and deal.II (Arndt et al. [1,2])
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Oxygen-assisted cracking behavior model based on phase-field fracture framework
    Huang, Xin
    Xie, Qikun
    Li, Shaolin
    Qi, Hongyu
    Yang, Xiaoguang
    Shi, Duoqi
    APPLIED MATHEMATICAL MODELLING, 2025, 143
  • [42] A thermodynamic framework for ductile phase-field fracture and gradient-enhanced crystal plasticity
    Auth, Kim Louisa
    Brouzoulis, Jim
    Ekh, Magnus
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2024, 108
  • [43] AN OPTIMAL CONTROL PROBLEM GOVERNED BY A REGULARIZED PHASE-FIELD FRACTURE PROPAGATION MODEL. PART II: THE REGULARIZATION LIMIT
    Neitzel, Ira
    Wick, Thomas
    Wollner, Winnifried
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (03) : 1672 - 1690
  • [44] Phase-Field Modelling of Brittle Fracture Using Time-Series Forecasting
    Minh Ngoc Dinh
    Chien Trung Vo
    Cuong Tan Nguyen
    Ngoc Minh La
    COMPUTATIONAL SCIENCE, ICCS 2022, PT II, 2022, : 266 - 274
  • [45] Second-order optimality conditions for an optimal control problem governed by a regularized phase-field fracture propagation model
    Hehl, Andreas
    Neitzel, Ira
    OPTIMIZATION, 2023, 72 (06) : 1665 - 1689
  • [46] A Crack-Length Control Technique for Phase-Field Fracture in FFT Homogenization
    Aranda, Pedro
    Segurado, Javier
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2025, 126 (02)
  • [47] A residual control staggered solution scheme for the phase-field modeling of brittle fracture
    Seles, Karlo
    Lesicar, Tomislav
    Tonkovic, Zdenko
    Soric, Jurica
    ENGINEERING FRACTURE MECHANICS, 2019, 205 : 370 - 386
  • [48] A Control Volume Finite Element Formulation with Subcell Reconstruction for Phase-Field Fracture
    Sargado, Juan Michael
    FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 527 - 536
  • [49] Space-time finite element approximation of parabolic optimal control problems
    Gong, W.
    Hinze, M.
    Zhou, Z. J.
    JOURNAL OF NUMERICAL MATHEMATICS, 2012, 20 (02) : 111 - 145
  • [50] Space-time RBF Method for Solving Hyperbolic Optimal Control Problems
    Kmet, Tibor
    Kmetova, Maria
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293