Spatio-Temporal Turbulence Mitigation: A Translational Perspective

被引:1
|
作者
Zhang, Xingguang [1 ]
Chimitt, Nicholas [1 ]
Chi, Yiheng [1 ]
Mao, Zhiyuan [2 ]
Chan, Stanley H. [1 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Samsung Res Amer, Mountain View, CA USA
来源
2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024 | 2024年
基金
美国国家科学基金会;
关键词
ATMOSPHERIC-TURBULENCE; VIDEO STABILIZATION; IMAGE;
D O I
10.1109/CVPR52733.2024.00279
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recovering images distorted by atmospheric turbulence is a challenging inverse problem due to the stochastic nature of turbulence. Although numerous turbulence mitigation (TM) algorithms have been proposed, their efficiency and generalization to real-world dynamic scenarios remain severely limited. Building upon the intuitions of classical TM algorithms, we present the Deep Atmospheric TUrbulence Mitigation network (DATUM). DATUM aims to overcome major challenges when transitioning from classical to deep learning approaches. By carefully integrating the merits of classical multi-frame TM methods into a deep network structure, we demonstrate that DATUM can efficiently perform long-range temporal aggregation using a recurrent fashion, while deformable attention and temporal-channel attention seamlessly facilitate pixel registration and lucky imaging. With additional supervision, tilt and blur degradation can be jointly mitigated. These inductive biases empower DATUM to significantly outperform existing methods while delivering a tenfold increase in processing speed. A large-scale training dataset, ATSyn, is presented as a co-invention to enable the generalization to real turbulence. Our code and datasets are available at https://xg416.github.io/DATUM
引用
收藏
页码:2889 / 2899
页数:11
相关论文
共 50 条
  • [21] Spatio-temporal SQL
    Viqueira, JRR
    Lorentzos, NA
    ADVANCES IN INFORMATICS, 2003, 2563 : 50 - 63
  • [22] Spatio-temporal symmetry
    Kolkmeijer, NH
    PHYSIKALISCHE ZEITSCHRIFT, 1921, 22 : 457 - 466
  • [23] Spatio-Temporal Footprints
    Guesgen, Hans W.
    Marsland, Stephen
    INTERNATIONAL JOURNAL OF AMBIENT COMPUTING AND INTELLIGENCE, 2010, 2 (01) : 52 - 58
  • [24] Spatio-temporal segmentation
    Swain, C
    Puri, A
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING '99, PARTS 1-2, 1998, 3653 : 1233 - 1236
  • [25] Spatio-temporal processes
    Harvill, Jane L.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (03) : 375 - 382
  • [26] Spatio-temporal predicates
    Erwig, M
    Schneider, M
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2002, 14 (04) : 881 - 901
  • [27] Spatio-temporal histograms
    Elmongui, HG
    Mokbel, MF
    Aref, WG
    ADVANCES IN SPATIAL AND TEMPORAL DATABASES, PROCEEDINGS, 2005, 3633 : 19 - 36
  • [28] SPATIO-TEMPORAL DATABASES
    Stancic, Baldo
    Kapovic, Zdravko
    10TH INTERNATIONAL MULTIDISCIPLINARY SCIENTIFIC GEOCONFERENCE: SGEM 2010, VOL I, 2010, : 1151 - 1158
  • [29] A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates
    Lindstrom, Johan
    Szpiro, Adam A.
    Sampson, Paul D.
    Oron, Assaf P.
    Richards, Mark
    Larson, Tim V.
    Sheppard, Lianne
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2014, 21 (03) : 411 - 433
  • [30] Segmentations of spatio-temporal images by spatio-temporal Markov random field model
    Kamijo, S
    Ikeuchi, K
    Sakauchi, M
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, 2001, 2134 : 298 - 313