Solvatochromic Dyes Increase the Sensitivity of Nanosensors

被引:0
|
作者
Ma, Chen [1 ]
Kistwal, Tanuja [1 ]
Hill, Bjoern F. [1 ]
Neutsch, Krisztian [1 ]
Kruss, Sebastian [1 ,2 ]
机构
[1] Ruhr Univ Bochum, Dept Chem, D-44801 Bochum, Germany
[2] Fraunhofer Inst Microelect Circuits & Syst, D-47057 Duisburg, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2025年 / 129卷 / 03期
关键词
PHASE MOLECULAR RECOGNITION; WALLED CARBON NANOTUBES; FLUORESCENT-PROBES; FAMILY; DNA;
D O I
10.1021/acs.jpcc.4c07273
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Organic dyes can be chemically tailored to bind specific molecules and act as molecular sensors or probes. However, they bleach, and most of them fluoresce in the UV-vis range. In contrast, nanomaterials such as single-wall carbon nanotubes (SWCNTs) fluoresce in the near-infrared (NIR) tissue transparency window and are extremely stable. Here, we combine solvatochromic dyes with SWCNTs to create molecular sensors and increase their sensitivity. We find that the dyes trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium iodide (t-DSMI) and Reichardt's dye (Betaine 30) increase the fluorescence responses of DNA-modified SWCNTs to target analytes. With t-DSMI the fluorescence of (GC)15-SWCNT decreases 4 times more in response to pH changes compared to SWCNTs alone. Betaine 30 also boosts the sensitivity of T20-SWCNT for the lipid linoleic acid (LA) more than 2-fold. A kinetic model shows that not the affinity for the analyte but mainly the fluorescence change is increased by the presence of the solvatochromic dyes. This approach provides a flexible design framework to increase the sensitivity of SWCNTs-based biosensors and combines the best of two worlds.
引用
收藏
页码:1824 / 1830
页数:7
相关论文
共 50 条
  • [21] Studies on solvatochromic behavior of dyes using spectral techniques
    Rauf, M. A.
    Hisaindee, S.
    JOURNAL OF MOLECULAR STRUCTURE, 2013, 1042 : 45 - 56
  • [22] Electrophilicity and solvatochromic reversal of pyridinium phenolate betaine dyes
    Caroli Rezende, Marcos
    Aracena, Andres
    CHEMICAL PHYSICS LETTERS, 2012, 542 : 147 - 152
  • [23] Highly solvatochromic fluorescence of anthraquinone dyes based on triphenylamines
    Li, Yanxia
    Tan, Tingfeng
    Wang, Shirong
    Xiao, Yin
    Li, Xianggao
    DYES AND PIGMENTS, 2017, 144 : 262 - 270
  • [24] Characterization of Antimonium crudum Activity Using Solvatochromic Dyes
    Bonamin, Leoni Villano
    Palombro Pedro, Renata Rossettini
    Mota, Hannah Maureen G.
    Correia Aguiar, Michelle S.
    Pinto, Sandra A. G.
    de Souza, Jefferson
    Silva de Oliveira, Larissa Helen
    Aparicio, Ana Carla
    Peres, Giovani B.
    Suffredini, Ivana
    Dutra-Correa, Maristela
    Cartwright, Steven J.
    HOMEOPATHY, 2020, 109 (02) : 79 - 86
  • [25] Solvatochromic fluorescent dyes as universal tools for biological research
    Klymchenko, Andrey S.
    ACTUALITE CHIMIQUE, 2012, (359): : 20 - 26
  • [26] SPECTROPHOTOMETRIC DETERMINATION OF WATER IN ORGANIC SOLVENTS WITH SOLVATOCHROMIC DYES
    KUMOI, S
    OYAMA, K
    YANO, T
    KOBAYASHI, H
    UENO, K
    TALANTA, 1970, 17 (04) : 319 - +
  • [27] The spectral properties and biological applications of solvatochromic Dapoxyl™ dyes
    Diwu, Z
    Lu, YX
    Zhang, CL
    Klaubert, DH
    Haugland, RP
    ADVANCES IN FLUORESCENCE SENSING TECHNOLOGY IV, PROCEEDINGS OF, 1999, 3602 : 256 - 264
  • [28] Thienylpyrrole azo dyes: synthesis, solvatochromic and electrochemical properties
    Raposo, MMM
    Sousa, AMRC
    Fonseca, AMC
    Kirsch, G
    TETRAHEDRON, 2005, 61 (34) : 8249 - 8256
  • [29] Potassium Sensitive Optical Nanosensors Containing Voltage Sensitive Dyes
    Xie, Xiaojiang
    Gutierrez, Agustin
    Trofimov, Valentin
    Szilagyi, Istvan
    Soldati, Thierry
    Bakker, Eric
    CHIMIA, 2015, 69 (04) : 196 - 198
  • [30] High-sensitivity nanosensors for biomarker detection
    Swierczewska, Magdalena
    Liu, Gang
    Lee, Seulki
    Chen, Xiaoyuan
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (07) : 2641 - 2655