Innovative Solutions to the Fractional Diffusion Equation Using the Elzaki Transform

被引:0
|
作者
Noor, Saima [1 ,2 ]
Alrowaily, Albandari W. [3 ]
Alqudah, Mohammad [4 ]
Shah, Rasool [5 ]
El-Tantawy, Samir A. [6 ,7 ]
机构
[1] King Faisal Univ, Dept Basic Sci, Gen Adm Preparatory Year, POB 400, Al Hasa 31982, Saudi Arabia
[2] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hufuf 31982, Saudi Arabia
[3] Princess Nourah bint Abdulrahman Univ, Coll Sci, Dept Phys, Riyadh 11671, Saudi Arabia
[4] German Jordanian Univ, Sch Elect Engn & Informat Technol, Dept Basic Sci, Amman 11180, Jordan
[5] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 03797, Lebanon
[6] Port Said Univ, Fac Sci, Dept Phys, Port Said 42521, Egypt
[7] Al Baha Univ, Fac Sci, Dept Phys, POB1988, Al Baha, Saudi Arabia
关键词
fractional calculus; fractional differential equations; fractional diffusion equation; variational iteration method; Elzaki transform; VARIATIONAL ITERATION METHOD; CALCULUS;
D O I
10.3390/mca29050075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study explores the application of advanced mathematical techniques to solve fractional differential equations, focusing particularly on the fractional diffusion equation. The fractional diffusion equation, used to simulate a range of physical and engineering phenomena, poses considerable difficulties when applied to fractional orders. Thus, by utilizing the mighty powers of fractional calculus, we employ the variational iteration method (VIM) with the Elzaki transform to produce highly accurate approximations for these specific differential equations. The VIM provides an iterative framework for refining solutions progressively, while the Elzaki transform simplifies the complex integral transforms involved. By integrating these methodologies, we achieve accurate and efficient solutions to the fractional diffusion equation. Our findings demonstrate the robustness and effectiveness of combining the VIM and the Elzaki transform in handling fractional differential equations, offering explicit functional expressions that are beneficial for theoretical analysis and practical applications. This research contributes to the expanding field of fractional calculus, providing valuable insights and useful tools for solving complex, nonlinear fractional differential equations across various scientific and engineering disciplines.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Continuity of solutions to a nonlinear fractional diffusion equation
    Lorenzo Brasco
    Erik Lindgren
    Martin Strömqvist
    Journal of Evolution Equations, 2021, 21 : 4319 - 4381
  • [22] Solutions for a fractional diffusion equation with noninteger dimensions
    Lucena, L. S.
    da Silva, L. R.
    Tateishi, A. A.
    Lenzi, M. K.
    Ribeiro, H. V.
    Lenzi, E. K.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (04) : 1955 - 1960
  • [23] On the Solutions of the Time-Fractional Diffusion Equation
    Takaci, Arpad
    Takaci, Djurdjica
    Strboja, Ana
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 538 - 540
  • [24] Solutions for a fractional diffusion equation in heterogeneous media
    Lenzi, E. K.
    da Silva, L. R.
    Sandev, T.
    Zola, R. S.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [25] Classical solutions for a logarithmic fractional diffusion equation
    de Pablo, Arturo
    Quiros, Fernando
    Rodriguez, Ana
    Luis Vazquez, Juan
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (06): : 901 - 924
  • [26] Continuity of solutions to a nonlinear fractional diffusion equation
    Brasco, Lorenzo
    Lindgren, Erik
    Stromqvist, Martin
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (04) : 4319 - 4381
  • [27] Solutions for a generalized fractional anomalous diffusion equation
    Lv, Long-Jin
    Xiao, Jian-Bin
    Zhang, Lin
    Gao, Lei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (01) : 301 - 308
  • [28] Solutions of certain fractional kinetic equations and a fractional diffusion equation
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (10)
  • [30] An Analytical View of Nonlinear Fractional Burger's Equations Using Conformable Double Elzaki Transform
    Abd Elmohmoud, Eltaib M.
    Mohamed, Mohamed Z.
    Magzoub, M.
    Elsheikh, Alla Mahmoud
    JOURNAL OF FUNCTION SPACES, 2023, 2023