From eyes to cameras: Computer vision for high-throughput liquid-liquid separation

被引:1
|
作者
El-khawaldeh, Rama [1 ]
Mandal, Abhijoy [2 ]
Yoshikawa, Naruki [2 ,3 ]
Zhang, Wenyu [1 ]
Corkery, Ryan [4 ]
Prieto, Paloma [1 ]
Aspuru-Guzik, Alan [2 ,3 ,5 ]
Darvish, Kourosh [2 ,3 ,5 ]
Hein, Jason E. [1 ,4 ,5 ,6 ]
机构
[1] Univ British Columbia, Dept Chem, Vancouver, BC, Canada
[2] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[3] Vector Inst, Toronto, ON, Canada
[4] Telescope Innovat Corp, Vancouver, BC, Canada
[5] Univ Toronto, Accelerat Consortium, Toronto, ON, Canada
[6] Univ Bergen, Dept Chem, Bergen, Norway
来源
DEVICE | 2024年 / 2卷 / 07期
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
EXTRACTION; WATER; OPTIMIZATION; ANILINE;
D O I
10.1016/j.device.2024.100404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a high-throughput automation platform for screening liquid-liquid extraction (LLE) processes. Our hardware platform simultaneously screens up to 12 vials and is coupled with a computer vision (CV) system for real-time monitoring of macroscopic visual cues. Our CV system, named HeinSight3.0, , leverages machine learning and image analysis to classify and quantify multivariate visual cues such as liquid level(s), turbidity, homogeneity, volume, and color. These cues, combined with process parameters such as stir rate and temperature, enable real-time analysis of key workup processes (e.g., separation time, volume ratio of layers, and emulsion presence) to aid in the optimization of separation parameters. We demonstrate our system on three case studies: impurity recovery, excess reagent removal, and Grignard workup. Our application of HeinSight3.0 to literature data also suggests a high potential for generalizability and adaptability across different platforms and contexts. Overall, our work represents a step toward autonomous LLE optimization guided by visual cues.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A high-throughput method for exploring the parameter space of protein liquid-liquid phase separation
    Li, Yichen
    Gu, Jinge
    Liu, Cong
    Li, Dan
    CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (03):
  • [2] High-Throughput Liquid-Liquid Extractions with Nanoliter Volumes
    Wells, Shane S.
    Kennedy, Robert T.
    ANALYTICAL CHEMISTRY, 2020, 92 (04) : 3189 - 3197
  • [3] Intensification of liquid-liquid mass transfer by oscillation in a high-throughput microextractor
    Xie, Tingliang
    Liu, Xuegang
    Xu, Cong
    Chen, Jing
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2017, 120 : 9 - 19
  • [4] Automated high-throughput liquid-liquid extraction for initial purification of combinatorial libraries
    Peng, SX
    Henson, C
    Strojnowski, MJ
    Golebiowski, A
    Klopfenstein, SR
    ANALYTICAL CHEMISTRY, 2000, 72 (02) : 261 - 266
  • [5] Nanoliter Scale Parallel Liquid-Liquid Extraction for High-Throughput Purification on a Droplet Microarray
    Wiedmann, Janne J.
    Demirdoegen, Yelda N.
    Schmidt, Stefan
    Kuzina, Mariia A.
    Wu, Yanchen
    Wang, Fei
    Nestler, Britta
    Hopf, Carsten
    Levkin, Pavel A.
    SMALL, 2023, 19 (09)
  • [6] High-Throughput Liquid-Liquid Fractionation of Multiple Protein Post-Translational Modifications
    DeFord, James H.
    Nuss, Jonathan E.
    Amaning, James
    English, Robert D.
    Tjernlund, Don
    Papaconstantinou, John
    JOURNAL OF PROTEOME RESEARCH, 2009, 8 (02) : 907 - 916
  • [7] High-throughput screening of polymeric membranes for liquid mixture separation
    Hedden, Ronald C.
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2020, 28 : 83 - 89
  • [8] High-Throughput Liquid-Liquid Extraction in 96-Well Format: Parallel Artificial Liquid Membrane Extraction
    Gjelstad, Astrid
    Andresen, Alf Terje
    Dahlgren, Anders
    Gundersen, Thomas E.
    Pedersen-Bjergaard, Stig
    LC GC NORTH AMERICA, 2017, 35 (03) : 192 - 196
  • [9] High-Throughput Liquid-Liquid Extraction in 96-Well Format: Parallel Artificial Liquid Membrane Extraction
    Gjelstad, Astrid
    Andresen, Alf Terje
    Dahlgren, Anders
    Gundersen, Thomas E.
    Pedersen-Bjergaard, Stig
    LC GC EUROPE, 2017, 30 (01) : 10 - 17
  • [10] Ionic-liquid-based dispersive liquid-liquid microextraction for high-throughput multiple food contaminant screening
    Ho, Yee-Man
    Tsoi, Yeuk-Ki
    Leung, Kelvin Sze-Yin
    JOURNAL OF SEPARATION SCIENCE, 2013, 36 (23) : 3791 - 3798