Co species modulating of BiOBr-based Z-scheme heterojunction for the transform photoreduction CO2 products from CO to CH4

被引:0
|
作者
You, Run-Jing [1 ]
Wang, Kuan [1 ]
Ma, Huan [1 ]
Li, Xin-Peng [1 ]
Cao, Zhe [1 ]
He, Zhen-Hong [1 ]
Wang, Huan [1 ]
Wang, Weitao [1 ]
Lai, Xiaojuan [1 ]
Liu, Zhao-Tie [1 ,2 ]
机构
[1] Shaanxi Univ Sci & Technol, Coll Chem & Chem Engn, Key Lab Chem Addit China Natl Light Ind, Xian 710021, Peoples R China
[2] Shaanxi Normal Univ, Sch Chem & Chem Engn, Xian 710119, Peoples R China
基金
中国国家自然科学基金;
关键词
Co species modulating; BiOBr-based Z-scheme heterojunction; Co-2; conversion; CO; CH4; REDUCTION; OXIDATION; CO3O4; NANOSHEETS; MECHANISM; VACANCY;
D O I
10.1016/j.cej.2025.161754
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The utilization of solar energy in photocatalytic CO2 reduction technology has demonstrated a significant potential in addressing the challenges of environmental pollution and energy shortage issues. Precise modulating of the photoreduction CO2 pathway to achieve desired products is of particular interest, while the design of costeffective and robust catalysts remains crucial. Herein, a series of BiOBr-based photocatalysts with different Co species were synthesized through a facile simple hydrothermal method in combination with the mechanical mixing. The Co species, which can be precisely modulated from Co3O4 to CoOOH by adjusting the concentration of H2O2, were anchored into the BiOBr nanospheres to establish rich Z-scheme heterojunction interfaces. The Co species modulating of BiOBr-based Z-scheme heterojunction can achieve the transform photoreduction CO2 products from CO to CH4. The CO selectivity in CO2 photoreduction to reached 98.10 % (54.10 mu mol center dot g- 1 center dot h- 1), while the CH4 selectivity over CoOOH/BiOBr reached 72.59 % (20.06 mu mol center dot g- 1 center dot h- 1). The outstanding photo- catalytic performance and selective regulation of products are ascribed to the modulation of Co species in the BiOBr-based heterojunctions, which enables the customization of the photoreduction CO2 pathway to achieve the desired products transformation from CO to CH4. In situ experiments and theoretical calculations reveal that the excellent CO selectivity observed in Co3O4/BiOBr heterojunction can be ascribed to a lower energy for *CO species compared with that of hydrogenation to *HCOOH and *CHO intermediates. Conversely, the presence of *HCOOH and *CHO intermediates with lower energy levels compared with *CO species achieved superior CH4 selectivity in CoOOH/BiOBr heterojunction. This precise design strategy insights into the meticulous customization of Co species in semiconductor-based heterostructures at the molecular level, and enlightens the selective regulation of desired products for catalysis applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Hollow spherical biomass derived-carbon dotted with SnS2/g-C3N4 Z-scheme heterojunction for efficient CO2 photoreduction into CO
    Li, Yang
    Yin, Qiao
    Zeng, Yingshan
    Liu, Zhi
    CHEMICAL ENGINEERING JOURNAL, 2022, 438
  • [42] Engineering the direct Z-scheme systems over lattice intergrown of MOF-on-MOF for selective CO2 photoreduction to CO
    Li, Jian
    Yu, Xinmiao
    Xue, Wenjuan
    Nie, Lei
    Huang, Hongliang
    Zhong, Chongli
    AICHE JOURNAL, 2023, 69 (03)
  • [43] Experimental study on hydrate-based CO2 removal from CH4/CO2 mixture
    Wang, Fei
    Fu, Shanfei
    Guo, Gang
    Jia, Zhen-Zhen
    Luo, Sheng-Jun
    Guo, Rong-Bo
    ENERGY, 2016, 104 : 76 - 84
  • [44] Z-Scheme Heterojunction of SnS2/Bi2WO6 for Photoreduction of CO2 to 100% Alcohol Products by Promoting the Separation of Photogenerated Charges
    Xu, Yong
    Yu, Juanjuan
    Long, Jianfei
    Tu, Lingxiao
    Dai, Weili
    Yang, Lixia
    NANOMATERIALS, 2022, 12 (12)
  • [45] New insights into the dissociation of mixed CH4/CO2 hydrates for CH4 production and CO2 storage
    Pandey, Jyoti Shanker
    Ouyang, Qian
    Solms, Nicolas von
    Chemical Engineering Journal, 2022, 427
  • [46] New insights into the dissociation of mixed CH4/CO2 hydrates for CH4 production and CO2 storage
    Pandey, Jyoti Shanker
    Ouyang, Qian
    von Solms, Nicolas
    CHEMICAL ENGINEERING JOURNAL, 2022, 427
  • [47] g-C3N4/CoNiFe-LDH Z-scheme heterojunction for efficient CO2 photoreduction and MB dye photodegradation
    Zhu, Biao
    Xu, Qianxin
    Bao, Xiaoyan
    Lu, Dawei
    Yin, Hao
    Qin, Yumei
    Shen, Xing-Can
    CATALYSIS SCIENCE & TECHNOLOGY, 2021, 11 (23) : 7727 - 7739
  • [48] PHOTOREDUCTION OF CO2 TO CH4 IN WATER USING DITITANODECATUNGSTOPHOSPHATE AS MULTIELECTRON TRANSFER CATALYST
    YAMASE, T
    SUGETA, M
    INORGANICA CHIMICA ACTA, 1990, 172 (02) : 131 - 134
  • [49] Improving photoreduction of CO2 with water to CH4 in a novel concentrated solar reactor
    Han, Sisi
    Chen, Yinfei
    Abanades, Stephane
    Zhang, Zekai
    JOURNAL OF ENERGY CHEMISTRY, 2017, 26 (04) : 743 - 749
  • [50] Improving photoreduction of CO2 with water to CH4 in a novel concentrated solar reactor
    Sisi Han
    Yinfei Chen
    Stéphane Abanades
    Zekai Zhang
    Journal of Energy Chemistry, 2017, (04) : 743 - 749