Co species modulating of BiOBr-based Z-scheme heterojunction for the transform photoreduction CO2 products from CO to CH4

被引:0
|
作者
You, Run-Jing [1 ]
Wang, Kuan [1 ]
Ma, Huan [1 ]
Li, Xin-Peng [1 ]
Cao, Zhe [1 ]
He, Zhen-Hong [1 ]
Wang, Huan [1 ]
Wang, Weitao [1 ]
Lai, Xiaojuan [1 ]
Liu, Zhao-Tie [1 ,2 ]
机构
[1] Shaanxi Univ Sci & Technol, Coll Chem & Chem Engn, Key Lab Chem Addit China Natl Light Ind, Xian 710021, Peoples R China
[2] Shaanxi Normal Univ, Sch Chem & Chem Engn, Xian 710119, Peoples R China
基金
中国国家自然科学基金;
关键词
Co species modulating; BiOBr-based Z-scheme heterojunction; Co-2; conversion; CO; CH4; REDUCTION; OXIDATION; CO3O4; NANOSHEETS; MECHANISM; VACANCY;
D O I
10.1016/j.cej.2025.161754
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The utilization of solar energy in photocatalytic CO2 reduction technology has demonstrated a significant potential in addressing the challenges of environmental pollution and energy shortage issues. Precise modulating of the photoreduction CO2 pathway to achieve desired products is of particular interest, while the design of costeffective and robust catalysts remains crucial. Herein, a series of BiOBr-based photocatalysts with different Co species were synthesized through a facile simple hydrothermal method in combination with the mechanical mixing. The Co species, which can be precisely modulated from Co3O4 to CoOOH by adjusting the concentration of H2O2, were anchored into the BiOBr nanospheres to establish rich Z-scheme heterojunction interfaces. The Co species modulating of BiOBr-based Z-scheme heterojunction can achieve the transform photoreduction CO2 products from CO to CH4. The CO selectivity in CO2 photoreduction to reached 98.10 % (54.10 mu mol center dot g- 1 center dot h- 1), while the CH4 selectivity over CoOOH/BiOBr reached 72.59 % (20.06 mu mol center dot g- 1 center dot h- 1). The outstanding photo- catalytic performance and selective regulation of products are ascribed to the modulation of Co species in the BiOBr-based heterojunctions, which enables the customization of the photoreduction CO2 pathway to achieve the desired products transformation from CO to CH4. In situ experiments and theoretical calculations reveal that the excellent CO selectivity observed in Co3O4/BiOBr heterojunction can be ascribed to a lower energy for *CO species compared with that of hydrogenation to *HCOOH and *CHO intermediates. Conversely, the presence of *HCOOH and *CHO intermediates with lower energy levels compared with *CO species achieved superior CH4 selectivity in CoOOH/BiOBr heterojunction. This precise design strategy insights into the meticulous customization of Co species in semiconductor-based heterostructures at the molecular level, and enlightens the selective regulation of desired products for catalysis applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Z-scheme heterojunction enhanced photocatalytic performance for CO2 reduction to CH4
    Feng, Bangli
    Wang, Qian
    Liu, Peng
    Yuan, Zibo
    Pan, Danxuan
    Ye, Mingfu
    Shen, Kejing
    Xin, Zhifeng
    NANOSCALE, 2024, 16 (37) : 17616 - 17623
  • [2] Z-scheme Bi/AgBiS2/P25 for enhanced CO2 photoreduction to CH4 and CO with photo-themal synergy
    Chen, Qiao
    Ma, Yongchao
    Qi, Beining
    Zhang, Tingfeng
    Wang, Lili
    Shi, Jinsheng
    Lan, Xuefang
    APPLIED SURFACE SCIENCE, 2021, 555
  • [3] Rational design of defect metal oxide/covalent organic frameworks Z-scheme heterojunction for photoreduction CO2 to CO
    Wang, Yan
    Hu, Zhao
    Wang, Wei
    Li, Yanan
    He, Haichuan
    Deng, Liu
    Zhang, Yi
    Huang, Jianhan
    Zhao, Ning
    Yu, Guipeng
    Liu, You-Nian
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 327
  • [4] BiOBr/NiO S-Scheme Heterojunction Photocatalyst for CO2 Photoreduction
    Wang, Zhongliao
    Cheng, Bei
    Zhang, Liuyang
    Yu, Jiaguo
    Tan, Haiyan
    SOLAR RRL, 2022, 6 (01)
  • [5] Combing Hollow Shell Structure and Z-Scheme Heterojunction Construction for Promoting CO2 Photoreduction
    Deng, Zesheng
    Cao, Jiazhen
    Hu, Songchang
    Wu, Shiqun
    Xing, Mingyang
    Zhang, Jinlong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (17): : 8071 - 8082
  • [6] Construction of Z-Scheme MnO2/BiOBr Heterojunction for Photocatalytic Ciprofloxacin Removal and CO2 Reduction
    Dong, Jintao
    Ji, Sainan
    Zhang, Yi
    Ji, Mengxia
    Wang, Bin
    Li, Yingjie
    Chen, Zhigang
    Xia, Jiexiang
    Li, Huaming
    ACTA PHYSICO-CHIMICA SINICA, 2023, 39 (11)
  • [7] Production of CH4 and CO on CuxO and NixOy coatings through CO2 photoreduction
    Avila-Lopez, Manuel Alejandro
    Tan, Jeannie Z. Y.
    Luevano-Hipolito, E.
    Torres-Martinez, Leticia M.
    Maroto-Valer, M. Mercedes
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (04):
  • [8] Facilely fabrication of the direct Z-scheme heterojunction of NH2-UiO-66 and CeCO3OH for photocatalytic reduction of CO2 to CO and CH4
    Mei, Yuxin
    Yuan, Nicui
    Xie, Yating
    Li, Yaping
    Lin, Baining
    Zhou, Yonghua
    APPLIED SURFACE SCIENCE, 2022, 597
  • [9] ATMOSPHERIC CH4, CO, AND CO2
    WOFSY, SC
    MCCONNELL, JC
    MCELROY, MB
    JOURNAL OF GEOPHYSICAL RESEARCH, 1972, 77 (24): : 4477 - +
  • [10] ATMOSPHERIC CH4, CO AND CO2
    WOFSY, SC
    MCELROY, MB
    MCCONNEL.JC
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1972, 53 (07): : 722 - &