3D-HYBRID CONVOLUTIONAL AUTOENCODER MODEL FOR HYPERSPECTRAL SATELLITE DATA COMPRESSION

被引:0
|
作者
Kuester, J. [1 ]
Gross, W. [1 ]
Michel, A. [1 ]
Schreiner, S. [1 ]
Middelmann, W. [1 ]
Heimann, M. [2 ]
机构
[1] Fraunhofer IOSB, Image Anal Grp, Gutleuthausstr 1, DE-76275 Ettlingen, Germany
[2] Karlsruhe Inst Technol, Inst Ind Informat Technol, Hertzstr 16, DE-76187 Karlsruhe, Germany
关键词
hyperspectral image (HSI) compression; spectral compression; entropy coding; feature extraction; dimensionality reduction; autoencoder; spectral analysis;
D O I
10.1109/IGARSS53475.2024.10640551
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This work addresses the challenge of including the spatial dimension into the autoencoder models for lossy compression of different spatially independent and unknown hyperspectral datasets acquired by space-borne hyperspectral sensors. We propose two different 3D-Hybrid Convolutional Autoencoder models with increased compression rates compared to 1D methods that can compress and reconstruct hyperspectral data with arbitrary spectral dimensionality. The architecture of the first 3D-Hybrid model consists of the A1D-CAE in combination with the 2D-CAE. The second 3D-Hybrid model includes the adaptive 1D-CAE and a 3D-CAE. The evaluation of the reconstruction accuracy is measured by comparing the spectral angle and the peak signal-to-noise ratio between the original and the reconstructed data and structural similarity index measure. We show the high transferability and generalizability of our 3D-Hybrid models on different PRISMA datasets. The 3D-Hybrid model is compared with the SSCNet(2D) based on a 2D-CAE and a 3D-CAE model. The findings of this study contribute to understanding the strengths and limitations of machine learning-based compression methods for jointly compressing spectral and spatial information.
引用
收藏
页码:2564 / 2567
页数:4
相关论文
共 50 条
  • [31] Hyperspectral Image Classification Using a Hybrid 3D-2D Convolutional Neural Networks
    Ghaderizadeh, Saeed
    Abbasi-Moghadam, Dariush
    Sharifi, Alireza
    Zhao, Na
    Tariq, Aqil
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) : 7570 - 7588
  • [32] Performance evaluation of 3D hybrid transforms and 2D-set partitioning methods for lossy hyperspectral data compression
    Shruti Sharma
    M. L. Dewal
    R. S. Anand
    Signal, Image and Video Processing, 2015, 9 : 1881 - 1888
  • [33] Performance evaluation of 3D hybrid transforms and 2D-set partitioning methods for lossy hyperspectral data compression
    Sharma, Shruti
    Dewal, M. L.
    Anand, R. S.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2015, 9 (08) : 1881 - 1888
  • [34] An Improved 3D SPIHT Coding for Hyperspectral Imagery Data Compression
    闫敬文
    沈贵明
    胡晓毅
    许芳
    ChineseJournalofLasers, 2002, (04) : 67 - 71
  • [35] Improved 3D SPIHT coding for hyperspectral imagery data compression
    Yan, Jingwen
    Shen, Guiming
    Hu, Xiaoyi
    Xu, Fang
    Chinese Journal of Lasers B (English Edition), 2002, 11 (04): : 306 - 310
  • [36] Variational Autoencoder for 3D Voxel Compression
    Liu, Juncheng
    Mills, Steven
    McCane, Brendan
    2020 35TH INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2020,
  • [37] COMPRESSION OF HYPERSPECTRAL IMAGERY USING THE 3-D DCT AND HYBRID DPCM/DCT
    ABOUSLEMAN, GP
    MARCELLIN, MW
    HUNT, BR
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1995, 33 (01): : 26 - 34
  • [38] DeepComp: A Hybrid Framework for Data Compression Using Attention Coupled Autoencoder
    Sriram, S.
    Dwivedi, Arun K.
    Chitra, P.
    Sankar, V. Vijay
    Abirami, S.
    Durai, S. J. Rethina
    Pandey, Divya
    Khare, Manoj K.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (08) : 10395 - 10410
  • [39] HYBRID COMPRESSION OF DYNAMIC 3D MESH DATA
    Kwak, Choong-Hoon
    Bajic, Ivan V.
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [40] DeepComp: A Hybrid Framework for Data Compression Using Attention Coupled Autoencoder
    S. Sriram
    Arun K. Dwivedi
    P. Chitra
    V. Vijay Sankar
    S. Abirami
    S. J. Rethina Durai
    Divya Pandey
    Manoj K. Khare
    Arabian Journal for Science and Engineering, 2022, 47 : 10395 - 10410