Spatial-Spectral Aggregation Transformer With Diffusion Prior for Hyperspectral Image Super-Resolution

被引:0
|
作者
Zhang, Mingyang [1 ]
Wang, Xiangyu [1 ]
Wu, Shuang [1 ]
Wang, Zhaoyang [1 ]
Gong, Maoguo [2 ,3 ]
Zhou, Yu [1 ]
Jiang, Fenlong [4 ]
Wu, Yue [4 ]
机构
[1] Xidian Univ, Sch Elect Engn, Key Lab Collaborat Intelligence Syst, Minist Educ, Xian 710071, Peoples R China
[2] Xidian Univ, Minist Educ, Key Lab Collaborat Intelligence Syst, Xian 710071, Peoples R China
[3] Inner Mongolia Normal Univ, Coll Math Sci, Hohhot 010028, Peoples R China
[4] Xidian Univ, Sch Comp Sci & Technol, Key Lab Collaborat Intelligence Syst, Minist Educ, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image super-resolution; prior features; attention mechanism; transformer; diffusion model;
D O I
10.1109/TCSVT.2024.3508844
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Constrained by imaging systems, hyperspectral images (HSIs) always have a low spatial resolution. Deep learning-based HSI super-resolution methods have achieved impressive results through learning the nonlinear mapping between low-resolution (LR) and high-resolution (HR) images. However, most of them take the LR image or its upsampled version through bicubic interpolation as input, leading to low-quality features and limited details captured by the network. As a powerful generative model, diffusion model has the ability to learn both contextual semantics and textual details from distinct timesteps, enabling the effective exploration of spatial-spectral distributions in high-dimensional data. In this paper, we propose a novel method that extracts high-quality prior information from original images to assist in super-resolution through pretraining a diffusion model. Specifically, we first train a diffusion model using original HSI patches in a self-supervised manner and then obtain prior features from the pretrained denoising U-Net decoder. To efficiently incorporate the prior features into the super-resolution model, we propose an adaptive fusion module based on spatial and spectral attention mechanisms, which enhances features in both dimensions while preserving the original characteristics. Additionally, to leverage the complementarity of spatial and spectral information, we design a spatial-spectral aggregation Transformer module that incorporates an adaptive interaction module to facilitate information exchange across different dimensions, thereby enhancing the representation capability. Extensive experiments on three public hyperspectral datasets demonstrate that the proposed method achieves excellent super-resolution performance and outperforms the state-of-the-art methods in terms of quantitative quality and visual results.
引用
收藏
页码:3557 / 3572
页数:16
相关论文
共 50 条
  • [21] Joint Spatial-Spectral Smoothing in a Minimum-Volume Simplex for Hyperspectral Image Super-Resolution
    Ma, Fei
    Yang, Feixia
    Ping, Ziliang
    Wang, Wenqin
    APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [22] Spatial-Spectral Structured Sparse Low-Rank Representation for Hyperspectral Image Super-Resolution
    Xue, Jize
    Zhao, Yong-Qiang
    Bu, Yuanyang
    Liao, Wenzhi
    Chan, Jonathan Cheung-Wai
    Philips, Wilfried
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3084 - 3097
  • [23] Spatial-Spectral Transformer for Hyperspectral Image Denoising
    Li, Miaoyu
    Fu, Ying
    Zhang, Yulun
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 1368 - 1376
  • [24] AS3ITransUNet: Spatial-Spectral Interactive Transformer U-Net With Alternating Sampling for Hyperspectral Image Super-Resolution
    Xu, Qin
    Liu, Shiji
    Wang, Jiahui
    Jiang, Bo
    Tang, Jin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [25] Spatial-Spectral Transformer for Hyperspectral Image Classification
    He, Xin
    Chen, Yushi
    Lin, Zhouhan
    REMOTE SENSING, 2021, 13 (03) : 1 - 22
  • [26] Spatial-spectral dual path hyperspectral image super-resolution reconstruction network based on spectral response functions
    Xu, Yinghao
    Jiang, Xi
    Hou, Junyi
    Sun, Yuanyuan
    Zhu, Xijun
    GEOCARTO INTERNATIONAL, 2023, 38 (01)
  • [27] Hyperspectral image super-resolution with spectral-spatial network
    Jia, Jinrang
    Ji, Luyan
    Zhao, Yongchao
    Geng, Xiurui
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (22) : 7806 - 7829
  • [28] DUAL 1D-2D SPATIAL-SPECTRAL CNN FOR HYPERSPECTRAL IMAGE SUPER-RESOLUTION
    Li, Jiaojiao
    Cui, Ruxing
    Li, Bo
    Li, Yunsong
    Mei, Shaohui
    Du, Qian
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3113 - 3116
  • [29] Spatial-Spectral Interaction Super-Resolution CNN-Mamba Network for Fusion of Satellite Hyperspectral and Multispectral Image
    Zhao, Guangwei
    Wu, Haitao
    Luo, Dexiang
    Ou, Xu
    Zhang, Yu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 18489 - 18501
  • [30] Dual Aggregation Transformer for Image Super-Resolution
    Chen, Zheng
    Zhang, Yulun
    Gu, Jinjin
    Kong, Linghe
    Yang, Xiaokang
    Yu, Fisher
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 12278 - 12287