Numerical solution of space-time variable fractional order advection-dispersion equation using radial basis functions

被引:2
|
作者
Moghadam, Abolfazl Soltanpour [1 ]
Arabameri, Maryam [1 ]
Barfeie, Mahdiar [2 ]
机构
[1] Univ Sistan & Baluchestan, Dept Math, Zahedan, Iran
[2] Sirjan Univ Technol, Dept Math & Comp Sci, Sirjan, Iran
来源
JOURNAL OF MATHEMATICAL MODELING | 2022年 / 10卷 / 03期
关键词
Advection-dispersion equation; Radial basis functions; Coimbra fractional derivative; Riemann-Liouvillefractional derivative; APPROXIMATION; CONVERGENCE; PARAMETER;
D O I
10.22124/JMM.2022.21325.1868
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims to advance the radial basis function method for solving space-time variableorder fractional partial differential equations. The fractional derivatives for time and space are considered in the Coimbra and the Riemann-Liouville sense, respectively. First, the time-variable fractional derivative is discretized through a finite difference approach. Then, the space-variable fractional derivative is approximated by radial basis functions. Also, we advance the Rippa algorithm to obtain a good value for the shape parameter of the radial basis functions. Results obtained from numerical experiments have been compared to the analytical solutions, which indicate high accuracy and efficiency for the proposed scheme.
引用
收藏
页码:549 / 562
页数:14
相关论文
共 50 条
  • [21] Ulam-Hyers stability and analytical approach for m-dimensional Caputo space-time variable fractional order advection-dispersion equation
    Verma, Pratibha
    Kumar, Manoj
    Shukla, Anand
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2022, 13 (01)
  • [22] NUMERICAL SIMULATION OF TIME VARIABLE FRACTIONAL ORDER MOBILE-IMMOBILE ADVECTION-DISPERSION MODEL
    Abdelkawy, M. A.
    Zaky, M. A.
    Bhrawy, A. H.
    Baleanu, D.
    ROMANIAN REPORTS IN PHYSICS, 2015, 67 (03) : 773 - 791
  • [23] The time fractional diffusion equation and the advection-dispersion equation
    Huang, F
    Liu, F
    ANZIAM JOURNAL, 2005, 46 : 317 - 330
  • [24] A finite element solution for the fractional advection-dispersion equation
    Huang, Quanzhong
    Huang, Guanhua
    Zhan, Hongbin
    ADVANCES IN WATER RESOURCES, 2008, 31 (12) : 1578 - 1589
  • [25] Existence of solution for a general fractional advection-dispersion equation
    Torres Ledesma, Cesar E.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (03) : 1303 - 1318
  • [26] VARIABLE SEPARATION FOR TIME FRACTIONAL ADVECTION-DISPERSION EQUATION WITH INITIAL AND BOUNDARY CONDITIONS
    Zhang, Sheng
    Liu, Mingying
    Zhang, Luyao
    THERMAL SCIENCE, 2016, 20 (03): : 789 - 792
  • [27] A Comparative Analysis of Fractional Space-Time Advection-Dispersion Equation via Semi-Analytical Methods
    Aljahdaly, Noufe H.
    Shah, Rasool
    Naeem, Muhammed
    Arefin, Mohammad Asif
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [28] Numerical Solution of Nonlinear Space-Time Fractional-Order Advection-Reaction-Diffusion Equation
    Dwivedi, Kushal Dhar
    Rajeev
    Das, Subir
    Baleanu, Dumitru
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2020, 15 (06):
  • [29] Hybridizable discontinuous Galerkin methods for space-time fractional advection-dispersion equations
    Zhao, Jingjun
    Zhao, Wenjiao
    Xu, Yang
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 442
  • [30] A numerical method for solving the time variable fractional order mobile-immobile advection-dispersion model
    Jiang, Wei
    Liu, Na
    APPLIED NUMERICAL MATHEMATICS, 2017, 119 : 18 - 32