Numerical solution of space-time variable fractional order advection-dispersion equation using radial basis functions

被引:2
|
作者
Moghadam, Abolfazl Soltanpour [1 ]
Arabameri, Maryam [1 ]
Barfeie, Mahdiar [2 ]
机构
[1] Univ Sistan & Baluchestan, Dept Math, Zahedan, Iran
[2] Sirjan Univ Technol, Dept Math & Comp Sci, Sirjan, Iran
来源
JOURNAL OF MATHEMATICAL MODELING | 2022年 / 10卷 / 03期
关键词
Advection-dispersion equation; Radial basis functions; Coimbra fractional derivative; Riemann-Liouvillefractional derivative; APPROXIMATION; CONVERGENCE; PARAMETER;
D O I
10.22124/JMM.2022.21325.1868
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims to advance the radial basis function method for solving space-time variableorder fractional partial differential equations. The fractional derivatives for time and space are considered in the Coimbra and the Riemann-Liouville sense, respectively. First, the time-variable fractional derivative is discretized through a finite difference approach. Then, the space-variable fractional derivative is approximated by radial basis functions. Also, we advance the Rippa algorithm to obtain a good value for the shape parameter of the radial basis functions. Results obtained from numerical experiments have been compared to the analytical solutions, which indicate high accuracy and efficiency for the proposed scheme.
引用
收藏
页码:549 / 562
页数:14
相关论文
共 50 条
  • [1] Numerical analysis of a new space-time variable fractional order advection-dispersion equation
    Zhang, H.
    Liu, F.
    Zhuang, P.
    Turner, I.
    Anh, V.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 : 541 - 550
  • [2] Numerical Solution of Space-time Variable Fractional Order Advection-Dispersion Equation using Jacobi Spectral Collocation Method
    Moghadam, Soltanpour A.
    Arabameri, M.
    Barfeie, M.
    Baleanu, D.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (01): : 139 - 168
  • [3] Numerical Solutions of the Space-Time Fractional Advection-Dispersion Equation
    Momani, Shaher
    Odibat, Zaid
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (06) : 1416 - 1429
  • [4] A numerical scheme for space-time fractional advection-dispersion equation
    Javadi, Shahnam
    Jani, Mostafa
    Babolian, Esmail
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2016, 7 (02): : 331 - 343
  • [5] The fundamental solution of the space-time fractional advection-dispersion equation
    Huang F.
    Liu F.
    Journal of Applied Mathematics and Computing, 2005, 18 (1-2) : 339 - 350
  • [6] Space-time duality for the fractional advection-dispersion equation
    Kelly, James F.
    Meerschaert, Mark M.
    WATER RESOURCES RESEARCH, 2017, 53 (04) : 3464 - 3475
  • [7] Application of a Legendre collocation method to the space-time variable fractional-order advection-dispersion equation
    Mallawi, F.
    Alzaidy, J. F.
    Hafez, R. M.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01): : 324 - 330
  • [8] An analytic algorithm for the space-time fractional advection-dispersion equation
    Pandey, Ram K.
    Singh, Om P.
    Baranwal, Vipul K.
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (05) : 1134 - 1144
  • [9] Numerical solution of fractional advection-dispersion equation
    Deng, ZQ
    Singh, VP
    Bengtsson, L
    JOURNAL OF HYDRAULIC ENGINEERING, 2004, 130 (05) : 422 - 431
  • [10] Numerical approximations for the Riesz space fractional advection-dispersion equations via radial basis functions
    Zafarghandi, Fahimeh Saberi
    Mohammadi, Maryam
    APPLIED NUMERICAL MATHEMATICS, 2019, 144 : 59 - 82