Multihyperuniformity in high-entropy MXenes

被引:0
|
作者
Liu, Yu [1 ,2 ,3 ]
Chen, Mohan [1 ,2 ,3 ]
机构
[1] Peking Univ, Coll Engn, HEDPS, CAPT, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[3] AI Sci Inst, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
ANODE MATERIALS; HYPERUNIFORMITY; INTERFACE; EFFICIENT;
D O I
10.1063/5.0246719
中图分类号
O59 [应用物理学];
学科分类号
摘要
MXenes are a large family of two-dimensional transition metal carbides and nitrides that possess excellent electrical conductivity, high volumetric capacitance, great mechanical properties, and hydrophilicity. In this work, we generalize the concept of multihyperuniformity, an exotic state that can exist in a disordered multi-component system, to MXenes. Disordered hyperuniform systems possess an isotropic local structure that lacks traditional translational and orientational order, yet they completely suppress infinite-wavelength density fluctuations as in perfect crystals and, in this sense, possess a hidden long-range order. In particular, we evaluate the static structure factor of the individual components present in the high-entropy (HE) MXene experimental sample TiVCMoCr based on high-resolution scanning electron microscope imaging data, which suggests that this HE MXene system is at least effectively multihyperuniform (MH). We then devise a packing algorithm to generate MH models of HE MXene systems. The MH HE MXenes are predicted to be energetically more stable compared to the prevailing (quasi)random models of the HE MXenes due to the hidden long-range order. Moreover, the MH structure exhibits a distinctly smaller lattice distortion, which has a vital effect on the electronic properties of HE MXenes, such as the density of states and charge distribution. This systematic study of HE MXenes strengthens our fundamental understanding of these systems and suggests possible exotic physical properties, as endowed by the multihyperuniformity.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] High-Entropy Alloys (HEAs)
    Gao, Michael C.
    Qiao, Junwei
    METALS, 2018, 8 (02)
  • [32] Synthesis of high-entropy materials
    Sun, Yifan
    Dai, Sheng
    NATURE SYNTHESIS, 2024, 3 (12): : 1457 - 1470
  • [33] Sustainable high-entropy materials?
    Han, Liuliu
    Mu, Wangzhong
    Wei, Shaolou
    Liaw, Peter K.
    Raabe, Dierk
    SCIENCE ADVANCES, 2024, 10 (50):
  • [34] Progress in High-Entropy Alloys
    Michael C. Gao
    JOM, 2014, 66 : 1964 - 1965
  • [35] Progress in High-Entropy Alloys
    Gao, Michael C.
    JOM, 2014, 66 (10) : 1964 - 1965
  • [36] Progress in High-Entropy Alloys
    Gao, Michael C.
    JOM, 2013, 65 (12) : 1749 - 1750
  • [37] An overview of high-entropy alloys
    Pshdar Ahmed Ibrahim
    İskender Özkul
    Canan Aksu Canbay
    Emergent Materials, 2022, 5 : 1779 - 1796
  • [38] Plasmonic high-entropy carbides
    Calzolari, Arrigo
    Oses, Corey
    Toher, Cormac
    Esters, Marco
    Campilongo, Xiomara
    Stepanoff, Sergei P.
    Wolfe, Douglas E.
    Curtarolo, Stefano
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [39] Polymorphism in a high-entropy alloy
    Zhang, Fei
    Wu, Yuan
    Lou, Hongbo
    Zeng, Zhidan
    Prakapenka, Vitali B.
    Greenberg, Eran
    Ren, Yang
    Yan, Jinyuan
    Okasinski, John S.
    Liu, Xiongjun
    Liu, Yong
    Zeng, Qiaoshi
    Lu, Zhaoping
    NATURE COMMUNICATIONS, 2017, 8
  • [40] High-entropy functional materials
    Gao, Michael C.
    Miracle, Daniel B.
    Maurice, David
    Yan, Xuehui
    Zhang, Yong
    Hawk, Jeffrey A.
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (19) : 3138 - 3155