Prediction of Pseudomonas aeruginosa abundance in drinking water distribution systems using machine learning

被引:0
|
作者
Zhou, Qiaomei [1 ]
Li, Yukang [2 ]
Wang, Min [2 ]
Huang, Jingang [1 ,3 ]
Li, Weishuai [1 ]
Qiu, Shanshan [1 ]
Wang, Haibo [2 ]
机构
[1] Hangzhou Dianzi Univ, Coll Mat & Environm Engn, Hangzhou 310018, Peoples R China
[2] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Key Lab Drinking Water Sci & Technol, Beijing 100085, Peoples R China
[3] Hangzhou Dianzi Univ, China Austria Belt & Rd Joint Lab Artificial Intel, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; Pseudomonas aeruginosa; Drinking water; Feature selection; Model validation; OPTIMIZATION; SELECTION;
D O I
10.1016/j.psep.2024.11.099
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The detection of Pseudomonas aeruginosa is a challenging but crucial task to ensure the bio-safety of drinking water. The current cultivation and molecular qPCR methods are costly, laborious and time-consuming, leading to inaccuracies and delayed monitoring. In this study, three machine learning (ML) models, including eXtreme Gradient Boosting (XGBoost), Random Forest (RF), and Support Vector Regression (SVR), were developed, interpreted, and validated for their ability to predict P. aeruginosa abundance in both urban and rural drinking water distribution systems (DWDS). To ensure the reliability and robustness of ML models, data leakage management for data pre-processing, 5-fold cross-validation and grid search for hyperparameters tuning were utilized during the training phase. To control overfitting issues, feature selection using embedded method was implemented to exclude three low-contributing input variables of oxidation-reduction potential (ORP), total chlorine, and heterotrophic plate counts (HPC). The XGBoost model outperformed RF and SVR models in terms of accuracy and generalizability in predicting P. aeruginosa abundance, achieving training/testing R2 of 0.92/ 0.85 in urban system, and 0.94/0.87 in rural system, respectively. Feature importance analysis revealed that water temperature, dissolved oxygen (DO), residual chlorine, and NO3--N were key variables for the prediction. The validation experiments, by randomly sampling from both urban and rural DWDS, demonstrated acceptable relative errors of 10.77 % and 8.86 %, respectively. Overall, this study provides an applicable ML modeling framework for the accurate and fast prediction of P. aeruginosa abundance in DWDS, potentially reducing laborious experiments in future.
引用
收藏
页码:1050 / 1060
页数:11
相关论文
共 50 条
  • [21] Disruption of Pseudomonas aeruginosa Adherent Cells by NaCl and NaOCl in Drinking Water
    Mourad Elgoulli
    Hafida Zahir
    Mostafa Ellouali
    Hassan Latrache
    Current Microbiology, 2023, 80
  • [22] Potential of fluorophore labeled aptamers for Pseudomonas aeruginosa detection in drinking water
    Lan Hee Kim
    Hye-Weon Yu
    Yang-Hoon Kim
    In S. Kim
    Am Jang
    Journal of the Korean Society for Applied Biological Chemistry, 2013, 56 : 165 - 171
  • [23] A prediction and interpretation machine learning framework of mortality risk among severe infection patients with pseudomonas aeruginosa
    Cui, Chen
    Mu, Fei
    Tang, Meng
    Lin, Rui
    Wang, Mingming
    Zhao, Xian
    Guan, Yue
    Wang, Jingwen
    FRONTIERS IN MEDICINE, 2022, 9
  • [24] Water quality prediction using machine learning methods
    Haghiabi, Amir Hamzeh
    Nasrolahi, Ali Heidar
    Parsaie, Abbas
    WATER QUALITY RESEARCH JOURNAL OF CANADA, 2018, 53 (01): : 3 - 13
  • [25] Applications of machine learning in drinking water quality management: A critical review on water distribution system
    Li, Zhaopeng
    Ma, Wencheng
    Zhong, Dan
    Ma, Jun
    Zhang, Qingzhou
    Yuan, Yongqin
    Liu, Xiaofei
    Wang, Xiaodong
    Zou, Kangbing
    JOURNAL OF CLEANER PRODUCTION, 2024, 481
  • [26] Predicting few disinfection byproducts in the water distribution systems using machine learning models
    Shakhawat Chowdhury
    Karim Asif Sattar
    Syed Masiur Rahman
    Environmental Science and Pollution Research, 2025, 32 (7) : 3776 - 3794
  • [27] Forecasting bacteriological presence in treated drinking water using machine learning
    Kyritsakas, Grigorios
    Boxall, Joby
    Speight, Vanessa
    FRONTIERS IN WATER, 2023, 5
  • [28] Prediction of Water Level Using Machine Learning and Deep Learning Techniques
    Ayus, Ishan
    Natarajan, Narayanan
    Gupta, Deepak
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2023, 47 (04) : 2437 - 2447
  • [29] Prediction of Water Level Using Machine Learning and Deep Learning Techniques
    Ishan Ayus
    Narayanan Natarajan
    Deepak Gupta
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2023, 47 : 2437 - 2447
  • [30] Prediction of drinking water quality with machine learning models: A public health nursing approach
    Ozsezer, Gozde
    Mermer, Gulengul
    PUBLIC HEALTH NURSING, 2024, 41 (01) : 175 - 191