Three-Role-Community Evolutionary Algorithm for Constrained Multi-objective Optimization Problems

被引:0
|
作者
Wang, Denghui [1 ]
Guo, Jinglei [1 ]
Deng, Yameng [1 ]
机构
[1] Cent China Normal Univ, Sch Comp Sci, Wuhan, Peoples R China
关键词
Evolutionary algorithm; Constrained multi-objective optimization; community evolutionary algorithm; Multitask optimization;
D O I
10.1007/978-981-97-5578-3_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Inspired by the concept of divide-and-conquer, existing multi-task/ multi-population constraint evolutionary algorithms (CMOEAs) have often employed an auxiliary population that disregards all constraints in order to simplify the problem. However, when dealing with complex Constraint Pareto Fronts (CPF), many existing approaches encounter difficulties in maintaining diversity and avoiding local optima. To address the above issue, the Three-role-community based CMOEA (TRC) which focuses on roles within the population is introduced to eliminate the burden of knowledge transfer between multi-task or multi-population CMOEAs. TRC establishes three essential roles: the feasible group, tasked with identifying CPFs; the exploration group, dedicated to discovering the unconstrained Pareto Front (UPF); and the diversity group, responsible for preserving population diversity. By dynamically adjusting the allocation of individuals to these roles, TRC effectively navigates the evolving problem landscape. Moreover, a flexible and straightforward quota allocation strategy for offspring size is designed in TRC. Rigorously tested on MW and DASCMOP test suites, TRC's performance is either better than or at least comparable to some state-of-the-art algorithms.
引用
收藏
页码:146 / 158
页数:13
相关论文
共 50 条
  • [41] An Opposition-based Repair Operator for Multi-objective Evolutionary Algorithm in Constrained Optimization Problems
    Fan, Zhun
    Li, Wenji
    Cai, Xinye
    Huang, Han
    Xie, Shuxiang
    Goodman, Erik
    2015 11TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2015, : 330 - 336
  • [42] Surrogate-assisted evolutionary algorithm for expensive constrained multi-objective discrete optimization problems
    Qinghua Gu
    Qian Wang
    Neal N. Xiong
    Song Jiang
    Lu Chen
    Complex & Intelligent Systems, 2022, 8 : 2699 - 2718
  • [43] A two-stage evolutionary algorithm based on three indicators for constrained multi-objective optimization
    Dong, Jun
    Gong, Wenyin
    Ming, Fei
    Wang, Ling
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 195
  • [45] Multi-Objective Neural Evolutionary Algorithm for Combinatorial Optimization Problems
    Shao, Yinan
    Lin, Jerry Chun-Wei
    Srivastava, Gautam
    Guo, Dongdong
    Zhang, Hongchun
    Yi, Hu
    Jolfaei, Alireza
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (04) : 2133 - 2143
  • [46] A multiple subswarms evolutionary algorithm for multi-objective optimization problems
    College of Computer Science and Technology, Jilin University, Changchun 130012, China
    Kongzhi yu Juece Control Decis, 2007, 11 (1313-1316+1320):
  • [47] A HYBRID PARTICLE SWARM EVOLUTIONARY ALGORITHM FOR CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION
    Wei, Jingxuan
    Wang, Yuping
    Wang, Hua
    COMPUTING AND INFORMATICS, 2010, 29 (05) : 701 - 718
  • [48] An evolutionary constrained multi-objective optimization algorithm with parallel evaluation strategy
    Shimoyama, Koji
    Kato, Taiga
    JOURNAL OF ADVANCED MECHANICAL DESIGN SYSTEMS AND MANUFACTURING, 2017, 11 (05):
  • [49] DNA sequence optimization using constrained multi-objective evolutionary algorithm
    Lee, IH
    Shin, SY
    Zhang, BT
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 2270 - 2276
  • [50] Evolutionary constrained multi-objective optimization: a review
    Jing Liang
    Hongyu Lin
    Caitong Yue
    Xuanxuan Ban
    Kunjie Yu
    Vicinagearth, 1 (1):