Influence of the combined effect of long hygrothermal aging and thermal cycling on mode I and II interlaminar fracture toughness of carbon/epoxy composites

被引:0
|
作者
Prado, Viviane Jordao Sano [1 ,2 ]
Pardini, Luiz Claudio [2 ]
机构
[1] Inst Tecnol Aeronaut ITA, Dept Aeronaut & Mech Engn, Praca Marechal Eduardo Gomes 50, BR-12228900 Sao Jose Dos Campos, Brazil
[2] Embraer SA, Mat Engn Res & Technol Dept, Sao Jose Dos Campos, Brazil
关键词
Environmental effects; fracture toughness; thermal cycling; hygrothermal; MOISTURE ABSORPTION; BEHAVIOR;
D O I
10.1177/00219983241304149
中图分类号
TB33 [复合材料];
学科分类号
摘要
Carbon fiber/epoxy composites (CFRP) are nowadays extensively used in aircraft structures. During the lifecycle of an aircraft, composites are subjected to temperature and humidity variation over time and that can lead to performance loss. Efforts to understand the environmental conditioning impact on CFRP properties have been widely investigated, leading to the main objective of this study, which was investigating whether damages caused by different environmental conditioning individually are intensified when they are combined. During an aircraft lifetime, several different environmental conditions may occur, and to simulate these effects, this research tested coupons that were exposed to long-term hygrothermal conditioning, drying and thermal cycling and their combined effects on fracture toughness in mode-I and mode-II. Dynamic mechanical and fractographic analysis were also performed on the specimens. Thermal cycling on unaged samples (reference) resulted in average reductions of 5% and 15%, for mode-I and mode-II fracture toughness, respectively, compared to the reference samples. Furthermore, combined effect of thermal cycling and hygrothermal conditionings resulted in reductions around 44% (mode-I) and 15% (mode-II) compared to the reference. The combination of different environmental conditionings was more detrimental to fracture toughness in Mode-I, as confirmed by fractographic analysis. In contrast, Mode-II showed no change in results when exposed to a combination of conditionings, suggesting that isolated analysis of the results can be misinterpreted. Combined effects of thermal cycling and hygrothermal conditioning affected fracture toughness more than either effect alone. Mode-I testing proved to be more sensitive to identifying environmental exposure effects on properties than mode-II.
引用
收藏
页码:1087 / 1106
页数:20
相关论文
共 50 条
  • [21] The Effect of Hygrothermal Aging on Mode I Fatigue Delamination Growth in a Carbon/Epoxy Composites
    LaPlante, Gabriel
    Landry, Benoit
    JOURNAL OF ADVANCED MATERIALS, 2011, 43 (02): : 79 - 86
  • [22] Influence of Hygrothermal Effect on the Mode II Fracture Toughness of Epoxy Resins for Civil Engineering Applications
    Ascione, Francesco
    Granata, Luigi
    Guadagno, Liberata
    Naddeo, Carlo
    10TH INTERNATIONAL CONFERENCE ON FRP COMPOSITES IN CIVIL ENGINEERING (CICE 2020/2021), 2022, 198 : 2378 - 2389
  • [23] Influence of ply orientation on mode I interlaminar fracture toughness of woven carbon and glass composites
    Kersiene, N.
    Ziliukas, A.
    Kersys, A.
    MECHANIKA, 2010, (02): : 31 - 36
  • [24] Mixed-mode I/II interlaminar fracture toughness of carbon fiber/epoxy composites with the addition of multiwalled carbon nanotubes by spraying technique
    Rodriguez-Gonzalez, J. A.
    Rubio-Gonzalez, C.
    JOURNAL OF COMPOSITE MATERIALS, 2018, 52 (22) : 3045 - 3052
  • [25] Effect of graphene oxide on the interlaminar fracture toughness of carbon fiber/epoxy composites
    Mishra, Kunal
    Bastola, Krishna P.
    Singh, Raman P.
    Vaidyanathan, Ranji
    POLYMER ENGINEERING AND SCIENCE, 2019, 59 (06): : 1199 - 1208
  • [26] Loading rate dependency on mode I interlaminar fracture toughness of unidirectional and woven carbon fibre epoxy composites
    Zabala, H.
    Aretxabaleta, L.
    Castillo, G.
    Aurrekoetxea, J.
    COMPOSITE STRUCTURES, 2015, 121 : 75 - 82
  • [27] The reversibility of Mode-I and -II interlaminar fracture toughness after hydrothermal aging of Carbon/Benzoxazine composites with a thermoplastic toughening interlayer
    Nash, N. H.
    Young, T. M.
    Stanley, W. F.
    COMPOSITE STRUCTURES, 2016, 152 : 558 - 567
  • [28] Effect of the loading rate on mode I interlaminar fracture toughness of laminated composites
    Hug, G.
    Thevenet, P.
    Fitoussi, J.
    Baptiste, D.
    ENGINEERING FRACTURE MECHANICS, 2006, 73 (16) : 2456 - 2462
  • [29] Influence of carbon nanotubes/polyetherketone-cardo interlayer structure on mode II interlaminar fracture toughness of the interleaved carbon fiber reinforced epoxy composites
    Ma, Tianyi
    Sun, Yuekun
    Yao, Jiawei
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (30)
  • [30] Effect of hygrothermal conditioning on the fracture toughness of carbon/epoxy composites cured in autoclave/Quickstep
    Khan, Laraib Alam
    Mahmood, Ali Hasan
    Syed, Ahmed Shuja
    Khan, Zaffar M.
    Day, Richard J.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2013, 32 (16) : 1165 - 1176