nnU-Net Revisited: A Call for Rigorous Validation in 3D Medical Image Segmentation

被引:3
|
作者
Isensee, Fabian [1 ,3 ]
Wald, Tassilo [1 ,3 ,7 ]
Ulrich, Constantin [1 ,5 ,6 ]
Baumgartner, Michael [1 ,3 ,7 ]
Roy, Saikat [1 ]
Maier-Hein, Klaus [1 ,3 ,4 ,5 ,6 ,7 ]
Jaeger, Paul F. [2 ,3 ]
机构
[1] German Canc Res Ctr, Div Med Image Comp, Heidelberg, Germany
[2] DKFZ, Interact Machine Learning Grp IML, Heidelberg, Germany
[3] DKFZ, Helmholtz Imaging, Heidelberg, Germany
[4] Heidelberg Univ Hosp, Dept Radiat Oncol, Pattern Anal & Learning Grp, Heidelberg, Germany
[5] Natl Ctr Tumor Dis NCT Heidelberg, Heidelberg, Germany
[6] Heidelberg Univ, Med Fac Heidelberg, Heidelberg, Germany
[7] Heidelberg Univ, Fac Math & Comp Sci, Heidelberg, Germany
关键词
Medical Image Segmentation; Validation; Benchmark; TRANSFORMER;
D O I
10.1007/978-3-031-72114-4_47
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The release of nnU-Net marked a paradigm shift in 3D medical image segmentation, demonstrating that a properly configured U-Net architecture could still achieve state-of-the-art results. Despite this, the pursuit of novel architectures, and the respective claims of superior performance over the U-Net baseline, continued. In this study, we demonstrate that many of these recent claims fail to hold up when scrutinized for common validation shortcomings, such as the use of inadequate baselines, insufficient datasets, and neglected computational resources. By meticulously avoiding these pitfalls, we conduct a thorough and comprehensive benchmarking of current segmentation methods including CNN-based, Transformer-based, and Mamba-based approaches. In contrast to current beliefs, we find that the recipe for state-of-the-art performance is 1) employing CNN-based U-Net models, including ResNet and ConvNeXt variants, 2) using the nnU-Net framework, and 3) scaling models to modern hardware resources. These results indicate an ongoing innovation bias towards novel architectures in the field and underscore the need for more stringent validation standards in the quest for scientific progress.
引用
收藏
页码:488 / 498
页数:11
相关论文
共 50 条
  • [21] 3D U2-Net: A 3D Universal U-Net for Multi-domain Medical Image Segmentation
    Huang, Chao
    Han, Hu
    Yao, Qingsong
    Zhu, Shankuan
    Zhou, S. Kevin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 : 291 - 299
  • [22] A novel multi-stage 3D medical image segmentation: Methodology and validation
    Xu, JF
    Gu, LX
    Zhuang, XH
    Peters, T
    COMPUTATIONAL INTELLIGENCE AND SECURITY, PT 1, PROCEEDINGS, 2005, 3801 : 884 - 889
  • [23] NnU-Net versus mesh growing algorithm as a tool for the robust and timely segmentation of neurosurgical 3D images in contrast-enhanced T1 MRI scans
    de Boer, Mathijs
    Kos, Tessa M.
    Fick, Tim
    van Doormaal, Jesse A. M.
    Colombo, Elisa
    Kuijf, Hugo J.
    Robe, Pierre A. J. T.
    Regli, Luca P.
    Bartels, Lambertus W.
    van Doormaal, Tristan P. C.
    ACTA NEUROCHIRURGICA, 2024, 166 (01)
  • [24] 3D bi-directional transformer U-Net for medical image segmentation
    Fu, Xiyao
    Sun, Zhexian
    Tang, Haoteng
    Zou, Eric M.
    Huang, Heng
    Wang, Yong
    Zhan, Liang
    FRONTIERS IN BIG DATA, 2023, 5
  • [25] Dual Stream Fusion U-Net Transformers for 3D Medical Image Segmentation
    Hong, Seungkyun
    Ahn, Sunghyun
    Jo, Youngwan
    Park, Sanghyun
    2024 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING, IEEE BIGCOMP 2024, 2024, : 301 - 308
  • [26] Efficient combined algorithm of Transformer and U-Net for 3D medical image segmentation
    Zhang, Mingyan
    Wang, Aixia
    Yang, Gang
    Li, Jingjiao
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4377 - 4382
  • [27] A hybrid framework for 3D medical image segmentation
    Chen, T
    Metaxas, D
    MEDICAL IMAGE ANALYSIS, 2005, 9 (06) : 547 - 565
  • [28] UNETR: Transformers for 3D Medical Image Segmentation
    Hatamizadeh, Ali
    Tang, Yucheng
    Nath, Vishwesh
    Yang, Dong
    Myronenko, Andriy
    Landman, Bennett
    Roth, Holger R.
    Xu, Daguang
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1748 - 1758
  • [29] EM-Net: Efficient Channel and Frequency Learning with Mamba for 3D Medical Image Segmentation
    Chang, Ao
    Zeng, Jiajun
    Huang, Ruobing
    Ni, Dong
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT IX, 2024, 15009 : 266 - 275
  • [30] Active Volume Models for 3D Medical Image Segmentation
    Shen, Tian
    Li, Hongsheng
    Qian, Zhen
    Huang, Xiaolei
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 707 - +