nnU-Net Revisited: A Call for Rigorous Validation in 3D Medical Image Segmentation

被引:3
|
作者
Isensee, Fabian [1 ,3 ]
Wald, Tassilo [1 ,3 ,7 ]
Ulrich, Constantin [1 ,5 ,6 ]
Baumgartner, Michael [1 ,3 ,7 ]
Roy, Saikat [1 ]
Maier-Hein, Klaus [1 ,3 ,4 ,5 ,6 ,7 ]
Jaeger, Paul F. [2 ,3 ]
机构
[1] German Canc Res Ctr, Div Med Image Comp, Heidelberg, Germany
[2] DKFZ, Interact Machine Learning Grp IML, Heidelberg, Germany
[3] DKFZ, Helmholtz Imaging, Heidelberg, Germany
[4] Heidelberg Univ Hosp, Dept Radiat Oncol, Pattern Anal & Learning Grp, Heidelberg, Germany
[5] Natl Ctr Tumor Dis NCT Heidelberg, Heidelberg, Germany
[6] Heidelberg Univ, Med Fac Heidelberg, Heidelberg, Germany
[7] Heidelberg Univ, Fac Math & Comp Sci, Heidelberg, Germany
关键词
Medical Image Segmentation; Validation; Benchmark; TRANSFORMER;
D O I
10.1007/978-3-031-72114-4_47
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The release of nnU-Net marked a paradigm shift in 3D medical image segmentation, demonstrating that a properly configured U-Net architecture could still achieve state-of-the-art results. Despite this, the pursuit of novel architectures, and the respective claims of superior performance over the U-Net baseline, continued. In this study, we demonstrate that many of these recent claims fail to hold up when scrutinized for common validation shortcomings, such as the use of inadequate baselines, insufficient datasets, and neglected computational resources. By meticulously avoiding these pitfalls, we conduct a thorough and comprehensive benchmarking of current segmentation methods including CNN-based, Transformer-based, and Mamba-based approaches. In contrast to current beliefs, we find that the recipe for state-of-the-art performance is 1) employing CNN-based U-Net models, including ResNet and ConvNeXt variants, 2) using the nnU-Net framework, and 3) scaling models to modern hardware resources. These results indicate an ongoing innovation bias towards novel architectures in the field and underscore the need for more stringent validation standards in the quest for scientific progress.
引用
收藏
页码:488 / 498
页数:11
相关论文
共 50 条
  • [1] i3Deep: Efficient 3D interactive segmentation with the nnU-Net
    Gotkowski, Karol
    Gonzalez, Camila
    Kaltenborn, Isabel
    Fischbach, Ricarda
    Bucher, Andreas
    Mukhopadhyay, Anirban
    INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 172, 2022, 172 : 441 - 456
  • [2] 3D PET/CT tumor segmentation based on nnU-Net with GCN refinement
    Xue, Hengzhi
    Fang, Qingqing
    Yao, Yudong
    Teng, Yueyang
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (18):
  • [3] Optimizing semi-supervised medical image segmentation with imbalanced filtering and nnU-Net enhancement
    Duan, Yuanchuan
    Wang, Peng
    Huang, Yan
    Hang, Yuxin
    Sun, Qi
    Shao, Haibo
    Yang, Jinzhu
    VISUAL COMPUTER, 2025,
  • [4] Kidney and Renal Tumor Segmentation by nnU-Net Using 3D CT Data from Different Sources
    Gido, Masanobu
    Nakagawa, Shota
    Mori, Kensaku
    Kakeya, Hideki
    ITE TRANSACTIONS ON MEDIA TECHNOLOGY AND APPLICATIONS, 2025, 13 (01): : 83 - 89
  • [5] nnU-Net based segmentation and 3D reconstruction of uterine fibroids with MRI images for HIFU surgery planning
    Wang, Ting
    Wen, Yingang
    Wang, Zhibiao
    BMC MEDICAL IMAGING, 2024, 24 (01):
  • [6] Independent Validation of a Deep Learning nnU-Net Tool for Neuroblastoma Detection and Segmentation in MR Images
    Veiga-Canuto, Diana
    Cerda-Alberich, Leonor
    Jimenez-Pastor, Ana
    Sierra, Jose Miguel Carot
    Gomis-Maya, Armando
    Sanguesa-Nebot, Cinta
    Fernandez-Paton, Matias
    Martinez de las Heras, Blanca
    Taschner-Mandl, Sabine
    Duester, Vanessa
    Poetschger, Ulrike
    Simon, Thorsten
    Neri, Emanuele
    Alberich-Bayarri, Angel
    Canete, Adela
    Hero, Barbara
    Ladenstein, Ruth
    Marti-Bonmati, Luis
    CANCERS, 2023, 15 (05)
  • [7] 3D Cross-Pseudo Supervision (3D-CPS): A Semi-supervised nnU-Net Architecture for Abdominal Organ Segmentation
    Huang, Yongzhi
    Zhang, Hanwen
    Yan, Yan
    Hassan, Haseeb
    FAST AND LOW-RESOURCE SEMI-SUPERVISED ABDOMINAL ORGAN SEGMENTATION, FLARE 2022, 2022, 13816 : 87 - 100
  • [8] nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
    Fabian Isensee
    Paul F. Jaeger
    Simon A. A. Kohl
    Jens Petersen
    Klaus H. Maier-Hein
    Nature Methods, 2021, 18 : 203 - 211
  • [9] nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
    Isensee, Fabian
    Jaeger, Paul F.
    Kohl, Simon A. A.
    Petersen, Jens
    Maier-Hein, Klaus H.
    NATURE METHODS, 2021, 18 (02) : 203 - +
  • [10] Adapted nnU-Net: A Robust Baseline for Cross-Modality Synthesis and Medical Image Inpainting
    Longuefosse, Arthur
    Le Bot, Edern
    De Senneville, Baudouin Denis
    Giraud, Remi
    Mansencal, Boris
    Coupe, Pierrick
    Desbarats, Pascal
    Baldacci, Fabien
    SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2024, 2025, 15187 : 24 - 33