Detection of Respiratory Arrhythmia in Radar Based Heartbeat Estimation

被引:0
|
作者
Tchameni, Michelle R. [1 ]
Luecken, Volker [1 ]
Schroeder, Udo [2 ]
Diewald, Andreas R. [1 ]
机构
[1] Univ Appl Sci, Lab Radar Technol & Opt Syst, Trier, Germany
[2] IEE SA, Basics & Math Models, Bissen, Luxembourg
关键词
FMCW radar; time measurement; vital signs monitoring; cross correlation; detection algorithm; respiratory sinus arrhythmia;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, an innovative non-contact method is used to monitor vital signs, specifically focusing on heartbeat estimation through radar signals. Our approach utilizes a cross-correlation method based on a template function, effectively isolating cardiac information from phase-extracted radar signals during breathing. By accurately identifying heartbeat peaks over time, our method showcases the potential of radar technology for real-time vital sign monitoring in healthcare applications. Experiments conducted with a 24 GHz FMCW radar system, compared with synchronized ECG data, highlight the efficiency of our approach. Beyond demonstrating non-contact cardiac monitoring, our method brings respiratory arrhythmia to the forefront, providing valuable insights into the intricate dynamics of cardiac and respiratory patterns. detection
引用
收藏
页码:28 / 29
页数:2
相关论文
共 50 条
  • [11] A deep learning approach for ECG-based heartbeat classification for arrhythmia detection
    Sannino, G.
    De Pietro, G.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 86 : 446 - 455
  • [12] Classification of Arrhythmia in Heartbeat Detection Using Deep Learning
    Ullah, Wusat
    Siddique, Imran
    Zulqarnain, Rana Muhammad
    Alam, Mohammad Mahtab
    Ahmad, Irfan
    Raza, Usman Ahmad
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [13] Heartbeat Detection with Doppler Radar Based on Estimation of Average R-R Interval Using Viterbi Algorithm
    Mogi, Eriko
    Ohtsuki, Tomoaki
    2016 IEEE 27TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2016, : 2443 - 2447
  • [14] Robust Heartbeat Detection with Doppler Radar Based on Stochastic Gradient Approach
    Ye, Chen
    Toyoda, Kentaroh
    Ohtsuki, Tomoaki
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2018,
  • [15] Experimental Setup for Comparison of Two Radar-Based Heartbeat Estimation Methods
    Tchameni, Michelle R.
    Diewald, Andreas R.
    Schroeder, Udo
    Olk, Andreas E.
    2024 INTERNATIONAL RADAR SYMPOSIUM, IRS 2024, 2024, : 93 - 96
  • [16] ECG-Based Heartbeat Classification for Arrhythmia Detection Using Artificial Neural Networks
    Cepeda, Eduardo
    Sanchez-Pozo, Nadia N.
    Peluffo-Ordonez, Diego H.
    Gonzalez-Vergara, Juan
    Almeida-Galarraga, Diego
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2022, PT II, 2022, 13376 : 247 - 259
  • [17] Fog-Computing-Based Heartbeat Detection and Arrhythmia Classification Using Machine Learning
    Scire, Alessandro
    Tropeano, Fabrizio
    Anagnostopoulos, Aris
    Chatzigiannakis, Ioannis
    ALGORITHMS, 2019, 12 (02)
  • [18] A Fast Machine Learning Model for ECG-Based Heartbeat Classification and Arrhythmia Detection
    Alfaras, Miquel
    Soriano, Miguel C.
    Ortin, Silvia
    FRONTIERS IN PHYSICS, 2019, 7
  • [19] Radar methods of detection of human breathing and heartbeat
    Bugaev, A. S.
    Vasil'ev, I. A.
    Ivashov, S. I.
    Chapurskii, V. V.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2006, 51 (10) : 1154 - 1168
  • [20] Radar methods of detection of human breathing and heartbeat
    A. S. Bugaev
    I. A. Vasil’ev
    S. I. Ivashov
    V. V. Chapurskii
    Journal of Communications Technology and Electronics, 2006, 51 : 1154 - 1168