Individual Versus Combined Effects of Warming, Elevated CO2 and Drought on Grassland Water Uptake and Fine Root Traits

被引:0
|
作者
Tissink, Maud [1 ]
Radolinski, Jesse [1 ,2 ]
Reinthaler, David [1 ]
Venier, Sarah [1 ]
Poetsch, Erich M. [3 ]
Schaumberger, Andreas [3 ]
Bahn, Michael [1 ]
机构
[1] Univ Innsbruck, Dept Ecol, Innsbruck, Austria
[2] Univ Maryland, Dept Environm Sci & Technol, College Pk, MD USA
[3] Raumberg Gumpenstein, Agr Res & Educ Ctr AREC, Irdning, Austria
来源
PLANT CELL AND ENVIRONMENT | 2025年 / 48卷 / 03期
基金
奥地利科学基金会;
关键词
global change; grassland water dynamics; root traits; root water uptake; XYLEM SAP FLOW; CLIMATE-CHANGE; PARTITIONING EVAPOTRANSPIRATION; TRANSPIRATION; BIOMASS; CONDUCTANCE; TEMPERATURE; ECOSYSTEMS; NORTHERN; DEFICIT;
D O I
10.1111/pce.15274
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Increasing warming, atmospheric CO2 and drought are expected to change the water dynamics of terrestrial ecosystems. Yet, limited knowledge exists about how the interactive effects of these factors will affect grassland water uptake, and whether adaptations in fine root production and traits will alter water uptake capacity. In a managed C3 grassland, we tested the individual and combined effects of warming (+3 degrees C), elevated CO2 (eCO2; +300 ppm) and drought on root water uptake (RWU) as well as on fine root production, trait adaptation, and fine root-to-shoot production ratios, and their relationships with RWU capacity. High temperatures, amplified by warming, exacerbated RWU reductions under drought, with negligible water-sparing effects from eCO2. Drought, both under current and future (warming, eCO2) climatic conditions, shifted RWU towards deeper soil layers. Overall, RWU capacity related positively to fine root production and specific root length (SRL), and negatively to mean root diameters. Warming effects on traits (reduced SRL, increased diameter) and the ratio of fine root-to-shoot production (increased) were offset by eCO2. We conclude that under warmer future conditions, irrespective of shifts in water sourcing, it is particularly hot droughts that will lead to increasingly severe restrictions of grassland water dynamics.
引用
收藏
页码:2083 / 2098
页数:16
相关论文
共 50 条
  • [41] The type of competition modulates the ecophysiological response of grassland species to elevated CO2 and drought
    Miranda-Apodaca, J.
    Perez-Lopez, U.
    Lacuesta, M.
    Mena-Petite, A.
    Munoz-Rueda, A.
    PLANT BIOLOGY, 2015, 17 (02) : 298 - 310
  • [42] Contrasting drivers of belowground nitrogen cycling in a montane grassland exposed to a multifactorial global change experiment with elevated CO2, warming, and drought
    Maxwell, Tania L.
    Canarini, Alberto
    Bogdanovic, Ivana
    Bockle, Theresa
    Martin, Victoria
    Noll, Lisa
    Prommer, Judith
    Seneca, Joana
    Simon, Eva
    Piepho, Hans-Peter
    Herndl, Markus
    Potsch, Erich M.
    Kaiser, Christina
    Richter, Andreas
    Bahn, Michael
    Wanek, Wolfgang
    GLOBAL CHANGE BIOLOGY, 2022, 28 (07) : 2425 - 2441
  • [43] Carbon and water fluxes in a calcareous grassland under elevated CO2
    Stocker, R
    Leadley, PW
    Korner, C
    FUNCTIONAL ECOLOGY, 1997, 11 (02) : 222 - 230
  • [44] Responses of grassland soil CO2 production and fluxes to drought are shifted in a warmer climate under elevated CO2
    Reinthaler, David
    Harris, Eliza
    Poetsch, Erich M.
    Herndl, Markus
    Richter, Andreas
    Wachter, Herbert
    Bahn, Michael
    SOIL BIOLOGY & BIOCHEMISTRY, 2021, 163
  • [45] Interactive effect of elevated CO2 and drought on physiological traits of Datura stramonium
    Javaid, Muhammad Mansoor
    Florentine, Singarayer
    Mahmood, Athar
    Wasaya, Allah
    Javed, Talha
    Sattar, Abdul
    Sarwar, Naeem
    Kalaji, Hazem M.
    Ahmad, Hafiz Bashir
    Worbel, Jacek
    Ahmed, Mohammed A. A.
    Telesinski, Arkadiusz
    Mojski, Jacek
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [46] Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants
    Albert, Kristian Rost
    Mikkelsen, Teis N.
    Michelsen, Anders
    Ro-Poulsen, Helge
    van der Linden, Leon
    JOURNAL OF PLANT PHYSIOLOGY, 2011, 168 (13) : 1550 - 1561
  • [47] Effects of drought stress and elevated CO2 on starch fine structures and functional properties in indica rice
    Zhang, Zhongwei
    Hu, Yaqi
    Yu, Shouwu
    Zhao, Xiangqian
    Dai, Gaoxing
    Deng, Guofu
    Bao, Jinsong
    CARBOHYDRATE POLYMERS, 2022, 297
  • [48] Elevated CO2 and Warming Altered Grassland Microbial Communities in Soil Top-Layers
    Yu, Hao
    Deng, Ye
    He, Zhili
    Van Nostrand, Joy D.
    Wang, Shang
    Jin, Decai
    Wang, Aijie
    Wu, Liyou
    Wang, Daohan
    Tai, Xin
    Zhou, Jizhong
    FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [49] Elevated CO2 and warming shift the functional composition of soil nematode communities in a semiarid grassland
    Mueller, Kevin E.
    Blumenthal, Dana M.
    Carrillo, Yolima
    Cesarz, Simone
    Ciobanu, Marcel
    Hines, Jes
    Pabst, Susann
    Pendall, Elise
    de Tomasel, Cecilia Milano
    Wall, Diana H.
    Eisenhauer, Nico
    SOIL BIOLOGY & BIOCHEMISTRY, 2016, 103 : 46 - 51
  • [50] Flowering phenology in a species-rich temperate grassland is sensitive to warming but not elevated CO2
    Hovenden, Mark J.
    Wills, Karen E.
    Schoor, Jacqueline K. Vander
    Williams, Amity L.
    Newton, Paul C. D.
    NEW PHYTOLOGIST, 2008, 178 (04) : 815 - 822