A Lightweight Ultra-Wideband Metasurface Microwave Absorber

被引:1
|
作者
Dong, Fu-Yan [1 ,2 ]
Niu, Chuanning [3 ]
Zhang, Mengmeng [1 ]
Wang, An [1 ]
Duan, Kun [4 ]
Zhao, Junming [4 ]
Zhu, Weiren [5 ]
Hou, Zhongyu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Natl Key Lab Adv Micro & Nano Manufacture Technol, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Dept Micro Nano Elect, Shanghai 200240, Peoples R China
[3] Shandong Univ, Sch Informat Sci & Engn, Qingdao 266237, Peoples R China
[4] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210093, Peoples R China
[5] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200240, Peoples R China
来源
ADVANCED MATERIALS TECHNOLOGIES | 2024年
基金
中国国家自然科学基金;
关键词
lightweight; metasurface; microwave absorber; ultra-wideband; OPTICALLY TRANSPARENT; DESIGN; METAMATERIAL;
D O I
10.1002/admt.202401493
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wideband microwave absorbers hold significant importance in both civilian and military fields. In this paper, a lightweight ultra-wideband metasurface microwave absorber that covers a frequency range from the ultrahigh-frequency band to Ku band is presented. The absorber consists of three layers of periodically arranged fourfold rotationally symmetric indium tin oxide (ITO) patterned structures and a reflective surface at the bottom layer separated by polymethacrylimide (PMI) spacers. Such a design enables the absorber to achieve a lightweight construction. The experimental results demonstrate that the absorber exhibits an absorptivity >90% in the 1.3-13.3 GHz band, with a corresponding fractional bandwidth of up to 164.4%. Additionally, the designed absorber features a remarkably lightweight performance with volume density relative to wavelength (VDRW) of just 6.71 mg cm(-3). Furthermore, attributed to its fourfold rotationally symmetric design, the absorber also exhibits polarization insensitivity and excellent angular stability. These unique properties render the proposed wideband absorber highly suitable for a variety of practical applications after reasonable adjustment and optimization.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Design of ultra-wideband capacitive circle absorber
    She, Jianjian
    Lu, Zhanbo
    Sun, Dan
    Yan, Xue Quan
    ELECTRONICS LETTERS, 2015, 51 (18) : 1398 - 1400
  • [42] Design of A Ultra-Wideband Absorber in the UHF Band
    Chen, Zhi Wen
    Ren, Wu
    Xue, Zheng Hui
    Li, Wei Ming
    2024 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY, ICMMT, 2024,
  • [43] An Ultra-wideband Metamaterial Absorber with Angular Stability
    Xu, Ruofeng
    Ma, Xingyu
    Kong, Xianglin
    Zhang, Shengjun
    Liu, Jiaqi
    Zhao, Lei
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2024, 39 (08): : 675 - 682
  • [44] Design of an Ultra-Wideband Transparent Wave Absorber
    Dai, Huijuan
    Li, Shuying
    Dong, Peng
    Ma, Yanqin
    MATERIALS, 2023, 16 (17)
  • [45] Ultra-wideband Absorber Based on Graphene Metamaterial
    Ren, Panpan
    Zhang, Guanmao
    Qiao, Litao
    Zhao, Yaping
    Gou, Zhihao
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2019, : 2431 - 2437
  • [46] A tunable ultra-wideband planar metamaterial absorber
    Liu, Qiang
    Hong, Wei
    Fan, Hehong
    Bai, Ningfeng
    2021 46TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), 2021,
  • [47] Geometric Phase Coded Microwave Metasurface for Ultra-wideband Radar Cross Section Reduction
    Cui, Li
    Chen, Ke
    Feng, Yijun
    Zhao, Junming
    Jiang, Tian
    Zhu, Bo
    2017 IEEE SIXTH ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP), 2017,
  • [48] Binary geometric phase metasurface for ultra-wideband microwave diffuse scatterings with optical transparency
    Chen, Ke
    Guo, Wenlong
    Ding, Guowen
    Zhao, Junming
    Jiang, Tian
    Feng, Yijun
    OPTICS EXPRESS, 2020, 28 (09): : 12638 - 12649
  • [49] Ultra-wideband microwave imaging of heterogeneities
    Yedlin, Matthew
    Cresp, Anthony
    Pichot, Christian
    Aliferis, Ioannis
    Dauvignac, Jean-Yves
    Gaffet, Stephane
    Senechal, Guy
    JOURNAL OF APPLIED GEOPHYSICS, 2009, 68 (01) : 17 - 25
  • [50] ULTRA-WIDEBAND MICROWAVE BEAMFORMING TECHNIQUE
    CARDONE, L
    MICROWAVE JOURNAL, 1985, 28 (04) : 121 - &