Unsupervised Health Indicator Fusing Time and Frequency Domain Information and Its Application to Remaining Useful Life Prediction

被引:0
|
作者
Chen, Dingliang [1 ]
Zhou, Jianghong [1 ]
Qin, Yi [1 ]
机构
[1] Chongqing Univ, State Key Lab Mech Transmiss Adv Equipment, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Degradation; Time-domain analysis; Monitoring; Gears; Feature extraction; Market research; Time-frequency analysis; Fast Fourier transforms; Data mining; Accuracy; Distribution estimation; health indicator (HI); mixture model; remaining useful life (RUL) prediction; unsupervised learning; CONSTRUCTION; NETWORK; TOOL;
D O I
10.1109/TIM.2025.3529072
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The prediction of component remaining useful life (RUL) is essential in making an appropriate maintenance plan for equipment. Constructing a reliable health indicator (HI) is crucial for RUL prediction. HI can be generated by quantifying distribution discrepancies. Most existing methods construct HIs based on the time domain, whereas in certain cases, time-domain data contain fewer degradation characteristics than frequency-domain data. To enhance the applicability and quality of HIs under different conditions, this article presents a novel unsupervised approach for generating HI from both the time and frequency domains. Considering the frequency-domain data characteristics of mechanical vibration signals, an exponential mixture model (EMM) is first applied to extract the frequency-domain distribution characteristics. Furthermore, a Gaussian mixture model (GMM) is used to mine time-domain distribution characteristics. Subsequently, a distribution contact ratio metric (DCRM) is employed to respectively generate the time and frequency domain HIs by quantifying the discrepancies between baseline distribution and data distributions at different degradation moments. The final HI is constructed by weighting the time and frequency domain HIs. RUL prediction is achieved using the Proposed-HI and a variant of recurrent neural network. Finally, the efficiency and superiority of this approach are validated using multiple gear life-cycle datasets, and the presented HI exhibits a higher RUL prediction accuracy than classical and advanced unsupervised HIs.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Unsupervised Fault Detection and Prediction of Remaining Useful Life for Online Prognostic Health Management of Mechanical Systems
    Calabrese, Francesca
    Regattieri, Alberto
    Botti, Lucia
    Mora, Cristina
    Galizia, Francesco Gabriele
    APPLIED SCIENCES-BASEL, 2020, 10 (12):
  • [32] Remaining useful life prediction based on nonlinear random coefficient regression model with fusing failure time data
    WANG Fengfei
    TANG Shengjin
    SUN Xiaoyan
    LI Liang
    YU Chuanqiang
    SI Xiaosheng
    Journal of Systems Engineering and Electronics, 2023, 34 (01) : 247 - 258
  • [33] Adversarial Regressive Domain Adaptation Approach for Infrared Thermography-Based Unsupervised Remaining Useful Life Prediction
    Jiang, Yimin
    Xia, Tangbin
    Wang, Dong
    Fang, Xiaolei
    Xi, Lifeng
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (10) : 7219 - 7229
  • [34] An unsupervised subdomain adaptation of cross-domain remaining useful life prediction for sensor-equipped equipments
    Yan, Jianhai
    Ye, Zhi-Sheng
    He, Shuguang
    He, Zhen
    COMPUTERS & INDUSTRIAL ENGINEERING, 2025, 203
  • [35] Pre-training enhanced unsupervised contrastive domain adaptation for industrial equipment remaining useful life prediction
    Li, Haodong
    Cao, Peng
    Wang, Xingwei
    Li, Ying
    Yi, Bo
    Huang, Min
    ADVANCED ENGINEERING INFORMATICS, 2024, 60
  • [36] A novel gear fatigue monitoring indicator and its application to remaining useful life prediction for spur gear in intelligent manufacturing systems
    Feng, Ke
    Ji, J. C.
    Ni, Qing
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 168
  • [37] Prediction of remaining useful life for equipment with partially observed information
    Li, W. (ythylwh@vip.163.com), 1600, AAAS Press of Chinese Society of Aeronautics and Astronautics (33):
  • [38] Health Indicator Construction Based on Multisensors for Intelligent Remaining Useful Life Prediction: A Reinforcement Learning Approach
    Peng, Zhaoqin
    Huang, Xucong
    Tang, Diyin
    Quan, Quan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [39] A novel health indicator for on-line lithium-ion batteries remaining useful life prediction
    Zhou, Yapeng
    Huang, Miaohua
    Chen, Yupu
    Tao, Ye
    JOURNAL OF POWER SOURCES, 2016, 321 : 1 - 10
  • [40] Bearing Remaining Useful Life Prediction Based on a Scaled Health Indicator and a LSTM Model with Attention Mechanism
    Gao, Songhao
    Xiong, Xin
    Zhou, Yanfei
    Zhang, Jiashuo
    MACHINES, 2021, 9 (10)