Semantics-Assisted Training Graph Convolution Network for Skeleton-Based Action Recognition

被引:0
|
作者
Hu, Huangshui [1 ]
Cao, Yu [1 ]
Fang, Yue [1 ]
Meng, Zhiqiang [1 ]
机构
[1] College of Computer Science and Engineering, Changchun University of Technology, Changchun,130012, China
关键词
Classification (of information) - Joints (anatomy) - Network coding - Network theory (graphs);
D O I
10.3390/s25061841
中图分类号
学科分类号
摘要
The skeleton-based action recognition networks often focus on extracting features such as joints from samples, while neglecting the semantic relationships inherent in actions, which also contain valuable information. To address the lack of utilization of semantic information, this paper proposes a semantics-assisted training graph convolution network (SAT-GCN). By dividing the features outputted by the skeleton encoder into four parts and contrasting them with the text features generated by the text encoder, the obtained contrastive loss is used to guide the overall network training. This approach effectively improves recognition accuracy while reducing the number of model parameters. In addition, angle features are incorporated into the skeleton model input to aid in classifying similar actions. Finally, a multi-feature skeleton encoder is designed to separately extract features such as joints, bones, and angles. These extracted features are then integrated through feature fusion. The fused features are then passed through three graph convolution blocks before being fed into fully connected layers for classification. Extensive experiments were conducted on three large-scale datasets, NTU RGB + D 60, NTU RGB + D 120, and NW-UCLA to validate the performance of the proposed model. The results show that the SAT-GCN outperforms others in terms of both accuracy and number of parameters. © 2025 by the authors.
引用
收藏
相关论文
共 50 条
  • [21] A lightweight graph convolutional network for skeleton-based action recognition
    Dinh-Tan Pham
    Quang-Tien Pham
    Tien-Thanh Nguyen
    Thi-Lan Le
    Hai Vu
    Multimedia Tools and Applications, 2023, 82 : 3055 - 3079
  • [22] Ghost Graph Convolutional Network for Skeleton-based Action Recognition
    Jang, Sungjun
    Lee, Heansung
    Cho, Suhwan
    Woo, Sungmin
    Lee, Sangyoun
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-ASIA (ICCE-ASIA), 2021,
  • [23] Shallow Graph Convolutional Network for Skeleton-Based Action Recognition
    Yang, Wenjie
    Zhang, Jianlin
    Cai, Jingju
    Xu, Zhiyong
    SENSORS, 2021, 21 (02) : 1 - 14
  • [24] A lightweight graph convolutional network for skeleton-based action recognition
    Pham, Dinh-Tan
    Pham, Quang-Tien
    Nguyen, Tien-Thanh
    Le, Thi-Lan
    Vu, Hai
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (02) : 3055 - 3079
  • [25] Shuffle Graph Convolutional Network for Skeleton-Based Action Recognition
    Yu, Qiwei
    Dai, Yaping
    Hirota, Kaoru
    Shao, Shuai
    Dai, Wei
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2023, 27 (05) : 790 - 800
  • [26] Feedback Graph Convolutional Network for Skeleton-Based Action Recognition
    Yang, Hao
    Yan, Dan
    Zhang, Li
    Sun, Yunda
    Li, Dong
    Maybank, Stephen J.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 164 - 175
  • [27] Hierarchical Graph Convolutional Network for Skeleton-Based Action Recognition
    Huang, Linjiang
    Huang, Yan
    Ouyang, Wanli
    Wang, Liang
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 93 - 102
  • [28] Combining Adaptive Graph Convolution and Temporal Modeling for Skeleton-Based Action Recognition
    Zhen, Haoyu
    Zhang, De
    Computer Engineering and Applications, 2023, 59 (18) : 137 - 144
  • [29] Si-GCN: Structure-induced Graph Convolution Network for Skeleton-based Action Recognition
    Liu, Rong
    Xu, Chunyan
    Zhang, Tong
    Zhao, Wenting
    Cui, Zhen
    Yang, Jian
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [30] Multi-scale and attention enhanced graph convolution network for skeleton-based violence action recognition
    Yang, Huaigang
    Ren, Ziliang
    Yuan, Huaqiang
    Wei, Wenhong
    Zhang, Qieshi
    Zhang, Zhaolong
    FRONTIERS IN NEUROROBOTICS, 2022, 16