Predicting rheological parameters of food biopolymer mixtures using machine learning

被引:0
|
作者
Dahl, Julie Frost [1 ]
Schlangen, Miek [2 ]
van der Goot, Atze Jan [2 ]
Corredig, Milena [1 ]
机构
[1] Aarhus Univ, Dept Food Sci, DK-8200 Aarhus N, Denmark
[2] Wageningen Univ, Food Proc Engn, Wageningen, Netherlands
关键词
Machine learning; Rheology; Closed cavity rheometer; Plant protein; Biopolymer mixes; EXTRUSION-COOKING;
D O I
10.1016/j.foodhyd.2024.110786
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Predicting the properties of foods prepared with plant protein ingredients through hydrothermal processing remains challenging. This study uses compositional data to predict rheological properties of plant-based biopolymer mixes using machine learning. Samples containing protein concentrations ranging from 14 to 43 % were prepared using a range of formulations, based on yellow pea and faba bean protein ingredients. The formulations were mixed with 0-13 % polysaccharides, namely maize starch, pectin, cellulose and carrageenan, to a final moisture ranging between 40 and 72 %. These mixtures were relevant for high moisture extrusion processing. Rheological data were collected in a closed cavity rheometer, applying small, medium, and large amplitude oscillatory shear. Data from 140 unique formulations were subjected to cluster analysis to identify patterns in the dataset and variable importance analysis to identify key input features and relevant output rheological parameters. Following, multiple supervised machine learning regression models were evaluated, with single-output Random Forest regression effectively predicting parameters in the linear viscoelastic regime, from compositional inputs, but not parameters in the non-linear regime. Accurate predictions of parameters in the non-linear regime could be obtained using multi-output Random Forest regression, with large deformation parameters as input. The results highlighted the interdependencies existing among rheological parameters, and clearly brought evidence of the strength of using machine learning as a tool to predict the rheological properties of plant-based biopolymer mixes, and to highlight trends in the data which may lead to an increased mechanistic understanding of the effect of composition on the structure formation during high moisture extrusion.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Machine learning approaches to predicting Hansen solubility parameters for polymers
    Guenthner, Andrew
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [42] Predicting EHL film thickness parameters by machine learning approaches
    Max Marian
    Jonas Mursak
    Marcel Bartz
    Francisco J. Profito
    Andreas Rosenkranz
    Sandro Wartzack
    Friction, 2023, 11 : 992 - 1013
  • [43] Predicting Happiness Index Using Machine Learning
    Akanbi, Kemi
    Jones, Yeboah
    Oluwadare, Sunkanmi
    Nti, Isaac Kofi
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [44] Predicting Enthalpy of Combustion Using Machine Learning
    Jameel, Abdul Gani Abdul
    Al-Muslem, Ali
    Ahmad, Nabeel
    Alquaity, Awad B. S.
    Zahid, Umer
    Ahmed, Usama
    PROCESSES, 2022, 10 (11)
  • [45] Predicting glycosylation stereoselectivity using machine learning
    Moon, Sooyeon
    Chatterjee, Sourav
    Seeberger, Peter H.
    Gilmore, Kerry
    CHEMICAL SCIENCE, 2021, 12 (08) : 2931 - 2939
  • [46] Using machine learning for predicting outcomes in ACLF
    Tonon, Marta
    Moreau, Richard
    LIVER INTERNATIONAL, 2022, 42 (11) : 2354 - 2355
  • [47] Predicting Packaging Sizes Using Machine Learning
    Heininger M.
    Ortner R.
    Operations Research Forum, 3 (3)
  • [48] Predicting mutational function using machine learning
    Shea, Anthony
    Bartz, Josh
    Zhang, Lei
    Dong, Xiao
    MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH, 2023, 791
  • [49] Predicting IRI Using Machine Learning Techniques
    Sharma, Ankit
    Sachdeva, S. N.
    Aggarwal, Praveen
    INTERNATIONAL JOURNAL OF PAVEMENT RESEARCH AND TECHNOLOGY, 2023, 16 (01) : 128 - 137
  • [50] Predicting Employee Attrition using Machine Learning
    Alduayj, Sarah S.
    Rajpoot, Kashif
    PROCEEDINGS OF THE 2018 13TH INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION TECHNOLOGY (IIT), 2018, : 93 - 98