LHKV: A Key-Value Data Collection Mechanism Under Local Differential Privacy

被引:0
|
作者
Xue, Weihao [1 ]
Sang, Yingpeng [1 ]
Tian, Hui [2 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
[2] Griffith Univ, Sch Informat & Commun Technol, Nathan, Qld, Australia
关键词
Local differential privacy; Key-value data; Local hashing;
D O I
10.1007/978-3-031-39847-6_16
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Local differential privacy (LDP) is an emerging technology used to protect privacy. Users are required to locally perturb their raw data under the framework of LDP, before they are transmitted to the server. This technology can be applied to various data types, including key-value data. However, in existing LDP mechanisms for key-value data, it is difficult to balance data utility and communication costs, particularly when the domain of keys is large. In this paper we propose a local-hashing-based mechanism called LHKV for collecting key-value data. LHKV can maintain high utility and keep the end-to-end communication costs low. We provide theoretical proof that LHKV satisfies epsilon-LDP and analyze the variances of frequency and mean estimations. Moreover, we employ Fast Local Hashing to accelerate the aggregation and estimation process, which significantly reduces computation costs. We also conduct experiments to demonstrate that, in comparison with the existing mechanisms, LHKV can effectively reduce communication costs without sacrificing utility while ensuring the same LDP guarantees.
引用
收藏
页码:228 / 242
页数:15
相关论文
共 50 条
  • [41] APLDP: Adaptive personalized local differential privacy data collection in mobile crowdsensing
    Song, Haina
    Shen, Hua
    Zhao, Nan
    He, Zhangqing
    Wu, Minghu
    Xiong, Wei
    Zhang, Mingwu
    COMPUTERS & SECURITY, 2024, 136
  • [42] A Resource Allocation Controller for Key-Value Data Stores
    Kim, Young Ki
    HoseinyF, M. Reza
    Lee, Young Choon
    Zomaya, Albert Y.
    2017 IEEE 16TH INTERNATIONAL SYMPOSIUM ON NETWORK COMPUTING AND APPLICATIONS (NCA), 2017, : 281 - 284
  • [43] Key-value caching of geospatial data for distributed GIS
    Tu, Zhenfa
    Meng, Lingkui
    Zhang, Wen
    Huang, Changqing
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2013, 38 (11): : 1339 - 1343
  • [44] Secure and Utility-Aware Data Collection with Condensed Local Differential Privacy
    Gursoy, Mehmet Emre
    Tamersoy, Acar
    Truex, Stacey
    Wei, Wenqi
    Liu, Ling
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2021, 18 (05) : 2365 - 2378
  • [45] Efficient Key-Value Data Placement for ZNS SSD
    Oh, Gijun
    Yang, Junseok
    Ahn, Sungyong
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [46] Exploiting key-value data stores scalability for HPC
    Cugnasco, Cesare
    Becerra, Yolanda
    Torres, Jordi
    Ayguade, Eduard
    2017 46TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING WORKSHOPS (ICPPW), 2017, : 85 - 94
  • [47] Multiple Privacy Regimes Mechanism for Local Differential Privacy
    Ye, Yutong
    Zhang, Min
    Feng, Dengguo
    Li, Hao
    Chi, Jialin
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2019), PT II, 2019, 11447 : 247 - 263
  • [48] Local differential privacy federated learning based on heterogeneous data multi-privacy mechanism
    Wang, Jie
    Zhang, Zhiju
    Tian, Jing
    Li, Hongtao
    COMPUTER NETWORKS, 2024, 254
  • [49] Evaluating the utility of human mobility data under local differential privacy
    Ioannou, Giorgos
    Marchioro, Thomas
    Nicolaides, Christos
    Pallis, George
    Markatos, Evangelos
    PROCEEDINGS OF THE 2024 25TH IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT, MDM 2024, 2024, : 67 - 76
  • [50] A Key-Value based Application Platform for Enterprise Big Data
    Hu, Bo
    Ma, Yutao
    Zhang, Liang-Jie
    Shi, Jiake
    Zhong, Jiayan
    2014 IEEE INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS), 2014, : 446 - 453