Pepgen-P15 delivery to bone: A novel 3D printed scaffold for enhanced bone regeneration

被引:0
|
作者
Eshghinejad, Atefeh [1 ]
Varshosaz, Jaleh [1 ]
Najafinezhad, Aliakbar [2 ]
Mirian, Mina [3 ]
机构
[1] Isfahan Univ Med Sci, Novel Drug Delivery Syst Res Ctr, Sch Pharm, Dept Pharmaceut, Esfahan, Iran
[2] Islamic Azad Univ, Adv Mat Res Ctr, Dept Mat Engn, Najafabad Branch, Najafabad, Iran
[3] Isfahan Univ Med Sci, Sch Pharm & Pharmaceut Sci, Dept Pharmaceut Biotechnol, Esfahan, Iran
关键词
3D printing; Polycaprolactone; Bredigite nanoparticle; Xanthan gum; Graphene oxide; Pepgen-P15; MAGNESIUM-MATRIX COMPOSITES; MARROW STROMAL CELLS; IN-VITRO BIOACTIVITY; POROUS SCAFFOLDS; GRAPHENE OXIDE; XANTHAN GUM; OSTEOGENIC DIFFERENTIATION; MECHANICAL-PROPERTIES; TISSUE; FABRICATION;
D O I
10.1016/j.jddst.2024.106280
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Pepgen-P15 is a combination of an organic hydroxyapatite matrix derived from bovine sources, combined with a synthetic peptide known as P-15. The interaction between alpha 2 beta 1 integrin and the P15 chain triggers both intracellular and extracellular signaling pathways, resulting in the production of growth factors. Threedimensional (3D) printing has recently emerged as an innovative strategy for developing personalized therapies in bone tissue regeneration. In this research, various ratios of calcium magnesium silicate (bredigite) nanoparticles were used to modify 3D printed scaffolds made of xanthan gum and polycaprolactone (PCL) via fused deposition modeling (FDM). Scaffolds were subsequently treated with an alkaline solution, covered with graphene oxide, and finally, Pepgen-P15 was applied. the effects of xanthan gum were assessed using swellability and contact angle tests. The results indicated that, the prepared scaffolds exhibited suitable degradation rates, mechanical characteristics, and apatite formation. Alizarin red and alkaline phosphatase assays were also conducted to evaluate the scaffolds' effectiveness in promoting bone cell differentiation during cell culture. Furthermore, the surface of the scaffold was examined to determine the amount of Pepgen-P15 loaded and released. According to the findings, the scaffold composed of 20 % bredigite and 0.3 % graphene oxide, coated with Pepgen-P15, demonstrate optimal mechanical properties, cell adherence, development, and proliferation. Typically, it is a good candidate for use in bone tissue engineering.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] 3D Printed Fe Scaffolds with HA Nanocoating for Bone Regeneration
    Yang, Chen
    Huan, Zhiguang
    Wang, Xiaoya
    Wu, Chengtie
    Chang, Jiang
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2018, 4 (02): : 608 - 616
  • [42] Biofabrication of 3D printed hydroxyapatite composite scaffolds for bone regeneration
    Kim, Yoontae
    Lee, Eun-Jin
    Davydov, Albert, V
    Frukhtbeyen, Stanislav
    Seppala, Jonathan E.
    Takagi, Shozo
    Chow, Laurence
    Alimperti, Stella
    BIOMEDICAL MATERIALS, 2021, 16 (04)
  • [43] 3D Printed Scaffolds with Controlled Release of Dexamethasone for Bone Regeneration
    Costa, P.
    Puga, A.
    Concheiro, A.
    Busch, D.
    van Griensven, M.
    Alvarez-Lorenzo, C.
    TISSUE ENGINEERING PART A, 2014, 20 : S56 - S57
  • [44] Bioessential Inorganic Molecular Wire-Reinforced 3D-Printed Hydrogel Scaffold for Enhanced Bone Regeneration
    Lee, Jin Woong
    Chae, Sudong
    Oh, Seungbae
    Kim, Dai-Hwan
    Kim, Si Hyun
    Kim, Seung Jae
    Choi, Jae-Young
    Lee, Jung Heon
    Song, Si Young
    ADVANCED HEALTHCARE MATERIALS, 2023, 12 (02)
  • [45] DEVELOPMENT OF 3D PRINTED GRAFTS BASED ON BONE EXTRACELLULAR MATRIX (ECM) FOR BONE REGENERATION
    Hayam, Rotem
    Machluf, Marcelle
    TISSUE ENGINEERING PART A, 2022, 28 : S539 - S539
  • [46] Development Of 3D Printed Personalized Grafts Based On Bone Extracellular Matrix For Bone Regeneration
    Hayam, R.
    Baruch, L.
    Machluf, M.
    TISSUE ENGINEERING PART A, 2022, 28 : 318 - 319
  • [47] DEVELOPMENT OF 3D PRINTED SCAFFOLD FOR OSTEOCHONDRAL REGENERATION
    Verisqa, Fiona
    Cha, Jae-Ryung
    Nguyen, Linh
    Kim, Hae-Won
    Knowles, Jonathan
    TISSUE ENGINEERING PART A, 2022, 28 : S248 - S249
  • [48] A 3D Bioprinted Pseudo-Bone Drug Delivery Scaffold for Bone Tissue Engineering
    Kondiah, Pariksha Jolene
    Kondiah, Pierre P. D.
    Choonara, Yahya E.
    Marimuthu, Thashree
    Pillay, Viness
    PHARMACEUTICS, 2020, 12 (02)
  • [49] Influence of scaffold geometry on the degradation rate of 3D printed polylactic acid bone scaffold
    Khaki, Nazanin
    Sharifi, Emad
    Solati-hashjin, Mehran
    Abolfathi, Nabiolah
    JOURNAL OF BIOMATERIALS APPLICATIONS, 2025, 39 (07) : 734 - 747
  • [50] 3D Printed Polyethylene Terephthalate (PET) Scaffold for Bone Tissue Engineering
    Thurzo, A.
    Zamborsky, R.
    Bohac, M.
    Danisovic, L.
    TISSUE ENGINEERING PART A, 2015, 21 : S350 - S350