A Robust and Efficient Visual-Inertial Initialization With Probabilistic Normal Epipolar Constraint

被引:0
|
作者
Mu, Changshi [1 ]
Feng, Daquan [1 ]
Zheng, Qi [1 ]
Zhuang, Yuan [2 ]
机构
[1] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen Key Lab Digital Creat Technol, Guangdong Hong Kong Joint Lab Big Data Imaging & C, Shenzhen 518060, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430072, Peoples R China
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2025年 / 10卷 / 04期
基金
国家重点研发计划;
关键词
Gyroscopes; Gravity; Cameras; Accuracy; Vectors; Visualization; Indexes; Translation; Simultaneous localization and mapping; Estimation; Visual-inertial SLAM; sensor fusion;
D O I
10.1109/LRA.2025.3544522
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Accurate and robust initialization is essential for Visual-Inertial Odometry (VIO), as poor initialization can severely degrade pose accuracy. During initialization, it is crucial to estimate parameters such as accelerometer bias, gyroscope bias, initial velocity, gravity, etc. Most existing VIO initialization methods adopt Structure from Motion (SfM) to solve for gyroscope bias. However, SfM is not stable and efficient enough in fast-motion or degenerate scenes. To overcome these limitations, we extended the rotation-translation-decoupled framework by adding new uncertainty parameters and optimization modules. First, we adopt a gyroscope bias estimator that incorporates probabilistic normal epipolar constraints. Second, we fuse IMU and visual measurements to solve for velocity, gravity, and scale efficiently. Finally, we design an additional refinement module that effectively reduces gravity and scale errors. Extensive EuRoC dataset tests show that our method reduces gyroscope bias and rotation errors by 16% and 4% on average, and gravity error by 29% on average. On the TUM dataset, our method reduces the gravity error and scale error by 14.2% and 5.7% on average respectively.
引用
收藏
页码:3590 / 3597
页数:8
相关论文
共 50 条
  • [41] Robust Multispectral Visual-Inertial Navigation With Visual Odometry Failure Recovery
    Beauvisage, Axel
    Ahiska, Kenan
    Aouf, Nabil
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 9089 - 9101
  • [42] An Online Initialization and Self-Calibration Method for Stereo Visual-Inertial Odometry
    Huang, Weibo
    Liu, Hong
    Wan, Weiwei
    IEEE TRANSACTIONS ON ROBOTICS, 2020, 36 (04) : 1153 - 1170
  • [43] Revisiting Visual-Inertial Structure-From-Motion for Odometry and SLAM Initialization
    Evangelidis, Georgios
    Micusik, Branislav
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 1415 - 1422
  • [44] Time Shifted IMU Preintegration for Temporal Calibration in Incremental Visual-Inertial Initialization
    Petit, Bruno
    Guillemard, Richard
    Gay-Bellile, Vincent
    2020 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2020), 2020, : 171 - 179
  • [45] Rapid Initialization using Relative Pose Constraints in Stereo Visual-Inertial Odometry
    Jung, Jae Hyung
    Chung, Jae Young
    Cha, Jaehyuck
    Park, Chan Gook
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2019, : 969 - 974
  • [46] PLE-SLAM: A Visual-Inertial SLAM Based on Point-Line Features and Efficient IMU Initialization
    He, Jiaming
    Li, Mingrui
    Wang, Yangyang
    Wang, Hongyu
    IEEE SENSORS JOURNAL, 2025, 25 (04) : 6801 - 6811
  • [47] Probabilistic Plane Extraction and Modeling for Active Visual-Inertial Mapping
    Usayiwevu, Mitchell
    Sukkar, Fouad
    Vidal-Calleja, Teresa
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 10601 - 10607
  • [48] Fast and Robust Semidirect Monocular Visual-Inertial Odometry for UAV
    Zeng, Qingxi
    Yu, Haonan
    Ji, Xufang
    Tao, Xiaodong
    Hu, Yixuan
    IEEE SENSORS JOURNAL, 2023, 23 (20) : 25254 - 25262
  • [49] Visual-inertial estimation of velocity for multicopters based on vision motion constraint
    Deng, Heng
    Arif, Usman
    Fu, Qiang
    Xi, Zhiyu
    Quan, Quan
    Cai, Kai-Yuan
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 107 : 262 - 279
  • [50] Robust Stereo Visual-Inertial Odometry Using Nonlinear Optimization
    Ma, Shujun
    Bai, Xinhui
    Wang, Yinglei
    Fang, Rui
    SENSORS, 2019, 19 (17)