A Robust and Efficient Visual-Inertial Initialization With Probabilistic Normal Epipolar Constraint

被引:0
|
作者
Mu, Changshi [1 ]
Feng, Daquan [1 ]
Zheng, Qi [1 ]
Zhuang, Yuan [2 ]
机构
[1] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen Key Lab Digital Creat Technol, Guangdong Hong Kong Joint Lab Big Data Imaging & C, Shenzhen 518060, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430072, Peoples R China
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2025年 / 10卷 / 04期
基金
国家重点研发计划;
关键词
Gyroscopes; Gravity; Cameras; Accuracy; Vectors; Visualization; Indexes; Translation; Simultaneous localization and mapping; Estimation; Visual-inertial SLAM; sensor fusion;
D O I
10.1109/LRA.2025.3544522
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Accurate and robust initialization is essential for Visual-Inertial Odometry (VIO), as poor initialization can severely degrade pose accuracy. During initialization, it is crucial to estimate parameters such as accelerometer bias, gyroscope bias, initial velocity, gravity, etc. Most existing VIO initialization methods adopt Structure from Motion (SfM) to solve for gyroscope bias. However, SfM is not stable and efficient enough in fast-motion or degenerate scenes. To overcome these limitations, we extended the rotation-translation-decoupled framework by adding new uncertainty parameters and optimization modules. First, we adopt a gyroscope bias estimator that incorporates probabilistic normal epipolar constraints. Second, we fuse IMU and visual measurements to solve for velocity, gravity, and scale efficiently. Finally, we design an additional refinement module that effectively reduces gravity and scale errors. Extensive EuRoC dataset tests show that our method reduces gyroscope bias and rotation errors by 16% and 4% on average, and gravity error by 29% on average. On the TUM dataset, our method reduces the gravity error and scale error by 14.2% and 5.7% on average respectively.
引用
收藏
页码:3590 / 3597
页数:8
相关论文
共 50 条
  • [1] Stereo-NEC: Enhancing Stereo Visual-Inertial SLAM Initialization with Normal Epipolar Constraints
    Wang, Weihan
    Chou, Chieh
    Sevagamoorthy, Ganesh
    Chen, Kevin
    Chen, Zheng
    Feng, Ziyue
    Xia, Youjie
    Cai, Feiyang
    Xu, Yi
    Mordohai, Philippos
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2024, 2024, : 2691 - 2697
  • [2] Fast and Robust Initialization for Visual-Inertial SLAM
    Campos, Carlos
    Montiel, Jose M. M.
    Tardos, Juan D.
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 1288 - 1294
  • [3] A Rotation-Translation-Decoupled Solution for Robust and Efficient Visual-Inertial Initialization
    He, Yijia
    Xu, Bo
    Ouyang, Zhanpeng
    Li, Hongdong
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 739 - 748
  • [4] A Robust Parallel Initialization Method for Monocular Visual-Inertial SLAM
    Zhong, Min
    Yao, Yiqing
    Xu, Xiaosu
    Wei, Hongyu
    SENSORS, 2022, 22 (21)
  • [5] Visual-Inertial Odometry with Robust Initialization and Online Scale Estimation
    Hong, Euntae
    Lim, Jongwoo
    SENSORS, 2018, 18 (12)
  • [6] Robust Initialization of Monocular Visual-Inertial Estimation on Aerial Robots
    Qin, Tong
    Shen, Shaojie
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 4225 - 4232
  • [7] Inertial-Only Optimization for Visual-Inertial Initialization
    Campos, Carlos
    Montiel, Jose M. M.
    Tardos, Juan D.
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 51 - 57
  • [8] Rapid and Robust Monocular Visual-Inertial Initialization with Gravity Estimation via Vertical Edges
    Li, Jinyu
    Bao, Hujun
    Zhang, Guofeng
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 6230 - 6236
  • [9] An Improved Initialization Method for Monocular Visual-Inertial SLAM
    Cheng, Jun
    Zhang, Liyan
    Chen, Qihong
    ELECTRONICS, 2021, 10 (24)
  • [10] Review of visual-inertial navigation system initialization method
    Liu Z.
    Shi D.
    Yang S.
    Li R.
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2023, 45 (02): : 15 - 26