Asymptotics of Weil-Petersson volumes and two-dimensional quantum gravities

被引:0
|
作者
Griguolo, Luca [1 ,2 ]
Papalini, Jacopo [3 ]
Russo, Lorenzo [4 ,5 ]
Seminara, Domenico [4 ,5 ]
机构
[1] Univ Parma, Dipartimento SMFI, Viale GP Usberti 7-A, I-43100 Parma, Italy
[2] INFN Grp Collegato Parma, Viale GP Usberti 7-A, I-43100 Parma, Italy
[3] Univ Ghent, Dept Phys & Astron, Krijgslaan 281-S9, B-9000 Ghent, Belgium
[4] Univ Firenze, Dipartimento Fis, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[5] INFN Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
来源
SCIPOST PHYSICS | 2024年 / 17卷 / 06期
基金
欧洲研究理事会;
关键词
MODULI SPACE;
D O I
10.21468/SciPostPhys.17.6.156
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a refined expression for the large genus asymptotics of the Weil-Petersson volumes of the moduli space of super-Riemann surfaces with an arbitrary number of boundaries. Our formula leverages the connection between JT supergravity and its matrix model definition, utilizing some basic tools of resurgence theory.The final result holds for arbitrary boundary lengths and preserves the polynomial structure of the supervolumes. As a byproduct we also obtain a prediction for the large genus asymptotics of generalized Theta-class intersection numbers. We extend our proposal to the case of the quantum volumes relevant for the Virasoro minimal string/Liouville gravity. Performing the classical limit on the quantum volumes, we recover a formula for the ordinary Weil-Petersson building blocks of JT gravity.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Two-dimensional (bi-)scalar gravities from four-dimensional Horndeski
    Shams Nejati, M.
    Vahidinia, M. H.
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (22)
  • [42] Asymptotics of the spectrum and quantum averages near the boundaries of spectral clusters for perturbed two-dimensional oscillators
    Pereskokov, A. V.
    MATHEMATICAL NOTES, 2012, 92 (3-4) : 532 - 543
  • [43] Asymptotics of the spectrum and quantum averages near the boundaries of spectral clusters for perturbed two-dimensional oscillators
    A. V. Pereskokov
    Mathematical Notes, 2012, 92 : 532 - 543
  • [44] Asymptotics for two-dimensional Farey-Brocot nets
    M. Vielhaber
    N. G. Moshchevitin
    Doklady Mathematics, 2007, 76 : 645 - 648
  • [45] Matched asymptotics for two-dimensional planing hydrofoils with spoilers
    Fridman, GM
    JOURNAL OF FLUID MECHANICS, 1998, 358 : 259 - 281
  • [46] Asymptotics for two-dimensional Farey-Brocot nets
    Vielhaber, M.
    Moshchevitin, N. G.
    DOKLADY MATHEMATICS, 2007, 76 (02) : 645 - 648
  • [47] TWO-DIMENSIONAL QUANTUM GEOMETRY
    Ambjorn, J.
    Budd, T.
    ACTA PHYSICA POLONICA B, 2013, 44 (12): : 2537 - 2557
  • [48] Two-dimensional quantum geometry
    Ambjorn, J
    Nielsen, JL
    Rolf, J
    THEORY OF ELEMENTARY PARTICLES, 1998, : 412 - 422
  • [49] Two-dimensional quantum repeaters
    Wallnoefer, J.
    Zwerger, M.
    Muschik, C.
    Sangouard, N.
    Duer, W.
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [50] ADM mass, Bondi mass, and energy conservation in two-dimensional dilaton gravities
    Kim, WT
    Lee, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (03): : 553 - 561