A Review on Analytical Heat Transfer in Functionally Graded Materials, Part II: Non-Fourier Heat Conduction

被引:0
|
作者
Amiri Delouei, Amin [1 ]
Emamian, Amin [1 ]
Ghorbani, Saeed [2 ]
Khorrami, Aref [3 ]
Jafarian, Karim [4 ]
Sajjadi, Hasan [4 ]
Atashafrooz, Meysam [5 ]
Jing, Dengwei [6 ]
Tarokh, Ali [1 ]
机构
[1] Lakehead Univ, Dept Mech Engn, Thunder Bay, ON P7B 5E1, Canada
[2] Quchan Univ Technol, Fac Adv Technol, Dept Mech Engn, Quchan 9477177870, Iran
[3] Univ Tehran, Dept Mech Engn, Tehran 1439957131, Iran
[4] Univ Bojnord, Dept Mech Engn, Bojnord 9453155111, Iran
[5] Sirjan Univ Technol, Dept Mech Engn, Sirjan 7813733385, Iran
[6] Xi An Jiao Tong Univ, Int Res Ctr Renewable Energy, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
来源
JOURNAL OF THERMAL SCIENCE | 2025年
关键词
non-Fourier heat conduction; functionally graded material; analytical solution; partial differential equation; THERMOELASTIC INTERACTION; 2ND SOUND; PROPAGATION; MULTILAYER; VIBRATION; NANOBEAMS; EQUATION; FRACTURE; MODEL; MEDIA;
D O I
10.1007/s11630-025-2113-6
中图分类号
O414.1 [热力学];
学科分类号
摘要
Non-Fourier heat conduction models are extended in response to heat transfer phenomena that cannot be accurately described by Fourier's Law of heat conduction. This paper provides a review of heat conduction in functionally graded materials (FGMs) employing non-Fourier models. FGMs are designed materials with a gradual transition in composition, microstructure, or thermal conductivity throughout their volume. The spatial variation in thermal conductivity can lead to deviations from Fourier's Law, resulting in non-Fourier heat conduction behavior in certain situations, such as at very short time scales or in materials with high thermal conductivity gradients. Researchers utilized various models, such as, Cattaneo-Vernotte, parabolic two-step model, hyperbolic two-step, phonon kinetic, dual-phase lag, and three-phase lag models to describe non-Fourier heat conduction phenomena. The objective of this review is to enhance the understanding of non-Fourier heat transfer in FGMs. As a result, the analytical studies conducted in this particular area receive a greater emphasis and focus. Various factors affecting non-Fourier heat conduction in FGMs including gradient function, material gradient index, initial conditions, boundary conditions, and type of non-Fourier model are investigated in various geometries. The literature reviews reveal that a significant portion of research efforts is centered around the utilization of dual phase lag and hyperbolic models in the field of non-Fourier heat conduction within FGMs.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Vortex characteristics in Fourier and non-Fourier heat conduction based on heat flux rotation
    Li, Shu-Nan
    Cao, Bing-Yang
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 108 : 2403 - 2407
  • [32] Inverse investigation of non-Fourier heat conduction in tissue
    Liu, Kuo-Chi
    Chen, Han-Taw
    Cheng, Po-Jen
    JOURNAL OF THERMAL BIOLOGY, 2016, 62 : 123 - 128
  • [33] Non-fourier effect in the steady state heat conduction
    Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
    Kung Cheng Je Wu Li Hsueh Pao, 2007, 2 (271-273):
  • [34] Non-Fourier phonon heat conduction at the microscale and nanoscale
    Chen, Gang
    NATURE REVIEWS PHYSICS, 2021, 3 (08) : 555 - 569
  • [35] Molecular dynamics simulations of non-Fourier heat conduction
    Qixin Liu
    ProgressinNaturalScience, 2008, (08) : 999 - 1007
  • [36] Transient criterion of non-Fourier heat conduction law
    Yu, Ning
    Pan, Jiansheng
    Gu, Jianfeng
    Hu, Mingjuan
    Jiguang Jishu/Laser Technology, 2002, 26 (02):
  • [37] Non-Fourier phonon heat conduction at the microscale and nanoscale
    Gang Chen
    Nature Reviews Physics, 2021, 3 : 555 - 569
  • [38] Molecular dynamics simulations of non-Fourier heat conduction
    Liu, Qixin
    Jiang, Peixue
    Xiang, Heng
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2008, 18 (08) : 999 - 1007
  • [39] Temperature in nonequilibrium states and non-Fourier heat conduction
    Dong, Yuan
    Cao, Bing-Yang
    Guo, Zeng-Yuan
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [40] Analytical solution of heat-transfer in central part of tibia bone tissue using non-Fourier heat equation with a laser heat source
    Katirachi, Nima
    RESULTS IN ENGINEERING, 2023, 18