Robust Control using Control Lyapunov Function and Hamilton-Jacobi Reachability

被引:0
|
作者
Yang, Chun-Ming [1 ]
Bhounsule, Pranav A. [1 ]
机构
[1] Univ Illinois, Dept Mech & Ind Engn, 842 Taylor St, Chicago, IL 60607 USA
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 28期
关键词
Control Lyapunov Function; Hamilton-Jacobi Reachability; Model Uncertainty; Quadcopter; Quadruped;
D O I
10.1016/j.ifacol.2025.01.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper presents a robust control technique that combines the Control Lyapunov function and Hamilton-Jacobi Reachability to compute a controller and its Region of Attraction (ROA). The Control Lyapunov function uses a linear system model with an assumed additive uncertainty to calculate a control gain and the level sets of the ROA as a function of the worst-case uncertainty. Next, Hamilton-Jacobi reachability uses the nonlinear model with the modeled uncertainty, which need not be additive, to compute the backward reachable set (BRS). Finally, by juxtaposing the level sets of the ROA with BRS, we can calculate the worst-case additive disturbance and the ROA of the nonlinear model. We illustrate our approach on a 2D quadcopter tracking a trajectory in the presence of disturbances and a 2D quadruped achieving height and velocity regulation in the presence of added mass. Copyright (c) 2024 The Authors.
引用
收藏
页码:264 / 269
页数:6
相关论文
共 50 条
  • [21] Robust Trajectory Planning for a Multirotor against Disturbance based on Hamilton-Jacobi Reachability Analysis
    Seo, Hoseong
    Lee, Donggun
    Son, Clark Youngdong
    Tomlin, Claire J.
    Kim, H. Jin
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 3150 - 3157
  • [22] Robust Trajectory Planning for a Multirotor against Disturbance based on Hamilton-Jacobi Reachability Analysis
    Seo, Hoseong
    Lee, Donggun
    Son, Clark Youngdong
    Tomlin, Claire J.
    Kim, H. Jin
    IEEE International Conference on Intelligent Robots and Systems, 2019, : 3150 - 3157
  • [23] A Sampled-Data Hamilton-Jacobi Reachability Approach to Safe and Robust Motion Planning
    Kleff, Sebastien
    Li, Ning
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 3385 - 3391
  • [24] Hamilton-Jacobi Reachability: A Brief Overview and Recent Advances
    Bansal, Somil
    Chen, Mo
    Herbert, Sylvia
    Tomlin, Claire J.
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [25] Scalable Learning of Safety Guarantees for Autonomous Systems using Hamilton-Jacobi Reachability
    Herbert, Sylvia
    Choi, Jason J.
    Sanjeev, Suvansh
    Gibson, Marsalis
    Sreenath, Koushil
    Tomlin, Claire J.
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 5914 - 5920
  • [26] Ensuring safety for vehicle parking tasks using Hamilton-Jacobi reachability analysis
    Jiang, Frank J.
    Gao, Yulong
    Xie, Lihua
    Johansson, Karl H.
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 1416 - 1421
  • [27] Thermal runaway avoidance using Hamilton–Jacobi reachability and model predictive control
    Kanavalau, Andrei
    Lall, Sanjay
    Computers and Chemical Engineering, 2022, 157
  • [28] SEMICONCAVE FUNCTIONS, HAMILTON-JACOBI EQUATIONS, AND OPTIMAL CONTROL
    Maslowski, Bohdan
    MATHEMATICA BOHEMICA, 2007, 132 (02): : 220 - 220
  • [29] Semiconcave Functions, Hamilton-Jacobi equations and Optimal Control
    Pascu, Mihai
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 52 (05): : 592 - 594
  • [30] HAMILTON-JACOBI EQUATIONS FOR OPTIMAL CONTROL ON JUNCTIONS AND NETWORKS
    Achdou, Yves
    Oudet, Salome
    Tchou, Nicoletta
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (03) : 876 - 899