Advances in Machine Learning Models for Healthcare Applications: A Precise and Patient-Centric Approach

被引:0
|
作者
Parashar, Bhumika [1 ]
Sridhar, Sathvik Belagodu [2 ]
Kalpana [3 ]
Malviya, Rishabha [1 ]
Prajapati, Bhupendra G. [4 ]
Uniyal, Prerna [5 ]
机构
[1] Galgotias Univ, Sch Med & Allied Sci, Dept Pharm, Greater Noida, Uttar Pradesh, India
[2] RAK Med & Hlth Sci Univ, RAK Coll Pharm, Ras Al Khaymah, U Arab Emirates
[3] Chhatrapati Shahu Ji Maharaj Univ, Sch Pharmaceut Sci, Kanpur, India
[4] Ganpat Univ, Sree S K Patel Coll Pharmaceut Educ & Res, Mehsana, Gujarat, India
[5] Graphic Era Hill Univ, Sch Pharm, Dehra Dun, India
关键词
Machine learning; patient monitoring; clinical decision support systems; electronic medical records; neural network; bias; data accuracy; ARTIFICIAL-INTELLIGENCE; CLASSIFICATION; PREDICTION; MANAGEMENT; BEDSIDE; DISEASE;
D O I
10.2174/0113816128353371250119121315
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background Healthcare is rapidly leveraging machine learning to enhance patient care, streamline operations, and address complex medical issues. Though ethical issues, model efficiency, and algorithmic bias exist, the COVID-19 pandemic highlighted its usefulness in disease outbreak prediction and treatment optimization.Aim This article aims to discuss machine learning applications, benefits, and the ethical and practical challenges in healthcare.Discussion Machine learning assists in diagnosis, patient monitoring, and epidemic prediction but faces challenges like algorithmic bias and data quality. Overcoming these requires high-quality data, impartial algorithms, and model monitoring.Conclusion Machine learning might revolutionize healthcare by making it more efficient and better for patients. Full acceptance and the advancement of technologies to improve health outcomes on a global scale depend on resolving ethical, practical, and technological concerns.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A call for unity: The path towards a more precise and patient-centric nomenclature for NAFLD
    European Assoc Study Liver
    Amer Assoc Study Liver Dis
    Latin Amer Assoc Study Liver
    JOURNAL OF HEPATOLOGY, 2023, 79 (07) : 4 - 5
  • [42] A patient-centric repository of PDX models for translational oncology research
    Khor, Tin O.
    Ben Zvi, Ido
    Katz, Amanda
    Vasquez-Dunddel, David
    Sloma, Ido
    Ciznadija, Daniel
    Sidransky, David
    Paz, Keren
    CANCER RESEARCH, 2015, 75
  • [43] How to Choose the Right Inhaler Using a Patient-Centric Approach?
    Cataldo, Didier
    Hanon, Shane
    Peche, Rudi V.
    Schuermans, Daniel J.
    Degryse, Jean M.
    De Wulf, Isabelle A.
    Elinck, Karin
    Leys, Mathias H.
    Rummens, Peter L.
    Derom, Eric
    ADVANCES IN THERAPY, 2022, 39 (03) : 1149 - 1163
  • [44] A patient-centric approach to preventing allergic reactions to platelet transfusions
    Vamvakas, Eleftherios C.
    TRANSFUSION, 2011, 51 (08) : 1651 - 1653
  • [45] The Patient-Centric Approach: The Importance of Setting Realistic Treatment Goals
    Marschall-Kehrel, Daniela
    Spinks, Julian
    EUROPEAN UROLOGY SUPPLEMENTS, 2011, 10 (01) : 23 - 27
  • [46] How to Choose the Right Inhaler Using a Patient-Centric Approach?
    Didier Cataldo
    Shane Hanon
    Rudi V. Peché
    Daniel J. Schuermans
    Jean M. Degryse
    Isabelle A. De Wulf
    Karin Elinck
    Mathias H. Leys
    Peter L. Rummens
    Eric Derom
    Advances in Therapy, 2022, 39 : 1149 - 1163
  • [47] Patient-Centric HetNets Powered by Machine Learning and Big Data Analytics for 6G Networks
    Hadi, Mohammed S.
    Lawey, Ahmed Q.
    El-Gorashi, Taisir E. H.
    Elmirghani, Jaafar M. H.
    IEEE ACCESS, 2020, 8 (85639-85655): : 85639 - 85655
  • [48] Navigating Viral Safety: A Patient-Centric Approach to Biotherapeutic Development
    Birkholz, Alysia
    MOLECULAR THERAPY, 2024, 32 (04) : 661 - 661
  • [49] More on a patient-centric approach in the anti-VEGF therapy
    Grzybowski, A.
    Ascaso, F. J.
    EYE, 2012, 26 (10) : 1388 - 1388
  • [50] Machine learning and deep learning-based approach in smart healthcare: Recent advances, applications, challenges and opportunities
    Rahman, Anichur
    Debnath, Tanoy
    Kundu, Dipanjali
    Khan, Md. Saikat Islam
    Aishi, Airin Afroj
    Sazzad, Sadia
    Sayduzzaman, Mohammad
    Band, Shahab S.
    AIMS PUBLIC HEALTH, 2024, 11 (01): : 58 - 109