Fault diagnosis method of automobile rolling bearing based on transfer learning and improved DenseNet

被引:0
|
作者
Lu, Xinxin [1 ]
Xiao, Yang [2 ]
机构
[1] Jiangsu Coll Engn & Technol, Sch Aviat & Transportat, Nantong 226007, Peoples R China
[2] Xinjiang Univ, Sch Mech Engn, Xinjiang, Peoples R China
关键词
fault diagnosis; transfer learning; dense net; recurrence plot; mobileViT attention mechanism;
D O I
10.17531/ein/194675
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Aiming at the problems caused by ignoring the time series characteristics, the scarcity of labeled data and the long diagnosis time in the fault diagnosis of one-dimensional vibration signals of automobile bearings, a new method combining improved DenseNet and transfer learning is proposed in this study. This method uses Recurrent Plot (RP) technology to convert one-dimensional vibration data into twodimensional images to fully tap the potential value of time series. By optimizing the DenseNet network structure, the fault features are extracted effectively.Lightweight network design and MobileViT Attention mechanism are used to reduce the number of parameters and improve computing efficiency. With the help of transfer learning technology, the fault features in the source domain are transferred to the target domain, which solves the problem of cross-condition diagnosis and greatly reduces the diagnosis time. The experimental results show that the proposed method can improve the accuracy of fault identification and diagnosis efficiency, and achieve accurate classification.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A novel transfer learning fault diagnosis method for rolling bearing based on feature correlation matching
    Wang, Bo
    Wang, Baoqiang
    Ning, Yi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (12)
  • [22] TRANSFER LEARNING ROLLING BEARING FAULT DIAGNOSIS METHOD BASED ON DEEP DOMAIN ADAPTIVE NETWORK
    Liao, Yu
    Geng, Jiahao
    Guo, Li
    Geng, Bing
    Cui, Kun
    Li, Runze
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2025, 21 (01): : 209 - 225
  • [23] A Bearing Fault Diagnosis Method Based on Improved Convolution Neural Network and Transfer Learning
    Jiang, Fan
    Shen, Xi
    Jiang, Feng
    Zhao, ZiShan
    Cheng, ShuMan
    INTERNATIONAL CONFERENCE ON INTELLIGENT EQUIPMENT AND SPECIAL ROBOTS (ICIESR 2021), 2021, 12127
  • [24] Partial Transfer Learning Method Based on Inter-Class Feature Transfer for Rolling Bearing Fault Diagnosis
    Que, Hongbo
    Liu, Xuyan
    Jin, Siqin
    Huo, Yaoyan
    Wu, Chengpan
    Ding, Chuancang
    Zhu, Zhongkui
    SENSORS, 2024, 24 (16)
  • [25] Intelligent fault diagnosis of rolling bearing based on a deep transfer learning network
    Wu, Zhenghong
    Jiang, Hongkai
    Zhang, Sicheng
    Wang, Xin
    Shao, Haidong
    Dou, Haoxuan
    2023 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT, ICPHM, 2023, : 105 - 111
  • [26] Rolling bearing fault diagnosis method based on improved residual shrinkage network
    Wang, Linjun
    Zou, Tengxiao
    Cai, Kanglin
    Liu, Yang
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2024, 46 (03)
  • [27] Rolling bearing fault diagnosis method based on improved wavelet threshold denoising
    Cao L.-L.
    Li J.
    Peng Z.
    Zhang Y.-F.
    Han W.-D.
    Fu H.-G.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2022, 35 (02): : 454 - 463
  • [28] Rolling bearing fault diagnosis method based on improved residual shrinkage network
    Linjun Wang
    Tengxiao Zou
    Kanglin Cai
    Yang Liu
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46
  • [29] Research on Rolling Bearing Fault Diagnosis Method Based on Improved LMD and CMWPE
    Enzhe Song
    Feng Gao
    Chong Yao
    Yun Ke
    Journal of Failure Analysis and Prevention, 2021, 21 : 1714 - 1728
  • [30] Research on Rolling Bearing Fault Diagnosis Method Based on Improved LMD and CMWPE
    Song, Enzhe
    Gao, Feng
    Yao, Chong
    Ke, Yun
    JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2021, 21 (05) : 1714 - 1728