Thermodynamic, economic, and carbon emission evaluation of various Organic Rankine cycle configurations for maximizing waste heat recovery potential

被引:0
|
作者
Klamrassamee, Thepparat [2 ]
Kittijungjit, Tanatip [1 ]
Sukjai, Yanin [1 ]
Laoonual, Yossapong [1 ,2 ]
机构
[1] King Mongkuts Univ Technol Thonburi, Fac Engn, Dept Mech Engn, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] King Mongkuts Univ Technol Thonburi, Mobil & Vehicle Technol Res Ctr MOVE, Bangkok, Thailand
关键词
Organic Rankine Cycle (ORC); Waste heat recovery; Thermodynamics; Economics; Carbon emission reduction; THERMOECONOMIC OPTIMIZATION; ORC; SYSTEMS; DESIGN; ENERGY;
D O I
10.1016/j.ecmx.2025.100943
中图分类号
O414.1 [热力学];
学科分类号
摘要
Waste heat recovery using the Organic Rankine Cycle (ORC) enhances energy efficiency, lowers emissions, and reduces costs. This study evaluates ORC systems for high-temperature waste heat recovery (515.14 degrees C) using DWSIM software. Various ORC configurations, including simple ORC (sORC), series ORC (S-ORC), single-stage regenerative ORC (SR-ORC), double-stage regenerative ORC (DR-ORC), and multi-evaporating pressure ORC (ME-ORC), were analyzed with different working fluids, including Toluene, Dodecane, Benzene, and Cyclopentane. Toluene was identified as the best working fluid, achieving a thermal efficiency of 24.33 % and a net power output of 1,839.66 kW in the sORC. The S-ORC demonstrated superior performance, delivering 3,679.32 kW of net power at the same efficiency. A parametric study examined the effects of operating pressure, exhaust gas temperature, and mass flow rate on efficiency. Results showed thermal efficiency peaked at 40.08 bar, with optimal performance at an exhaust gas temperature of 520 degrees C and a mass flow rate of 44.5 kg/s. Exergy analysis identified the evaporator as the main source of inefficiency, highlighting opportunities for improvement to boost overall system efficiency. Economically, the S-ORC achieved a Net Present Value (NPV) of 3.98 million EUR, a payback period of 5.75 years, and an Internal Rate of Return (IRR) of 12.66 %. It also reduced CO2 emissions by 12,971.36 metric tons annually, translating to 1.04 million EUR in revenue through carbon credit trading under the EU ETS. In summary, the S-ORC configuration offers the best balance of thermodynamic, economic, and environmental benefits for industrial waste heat recovery systems.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery
    Cignitti, Stefano
    Andreasen, Jesper G.
    Haglind, Fredrik
    Woodley, John M.
    Abildskov, Jens
    APPLIED ENERGY, 2017, 203 : 442 - 453
  • [32] Study of Gasoline Engine Waste Heat Recovery by Organic Rankine Cycle
    Wang, E. H.
    Zhang, H. G.
    Fan, B. Y.
    Liang, H.
    Ouyang, M. G.
    MANUFACTURING SCIENCE AND TECHNOLOGY, PTS 1-8, 2012, 383-390 : 6071 - +
  • [33] WASTE HEAT RECOVERY FOR LOCOMOTIVE ENGINES USING THE ORGANIC RANKINE CYCLE
    Jeihouni, Yousef
    Franke, Michael
    Lierz, Klaus
    Tomazic, Dean
    Heuser, Peter
    PROCEEDINGS OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL CONFERENCE, 2015, VOL 1, 2016,
  • [34] Study and Design of Waste Heat Recovery using Organic Rankine Cycle
    Homami, Seyed Saied
    Khoshgard, Ahmad
    Momenifar, Maryam
    Sayad, Hamed Nemati
    Heidarimoghadam, Hamidreza
    ORIENTAL JOURNAL OF CHEMISTRY, 2016, 32 (01) : 659 - 664
  • [35] Dynamic test on waste heat recovery system with organic Rankine cycle
    Zhi-qi Wang
    Li-wen Liu
    Xiao-xia Xia
    Nai-jun Zhou
    Journal of Central South University, 2014, 21 : 4607 - 4612
  • [36] Effect of working fluids on organic Rankine cycle for waste heat recovery
    Liu, BT
    Chien, KH
    Wang, CC
    ENERGY, 2004, 29 (08) : 1207 - 1217
  • [37] Dynamic test on waste heat recovery system with organic Rankine cycle
    王志奇
    刘力文
    夏小霞
    周乃君
    JournalofCentralSouthUniversity, 2014, 21 (12) : 4607 - 4612
  • [38] Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle
    Benato, Alberto
    Macor, Alarico
    ENERGIES, 2017, 10 (03)
  • [39] Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle
    He, Tianqi
    Shi, Rongqi
    Peng, Jie
    Zhuge, Weilin
    Zhang, Yangjun
    ENERGIES, 2016, 9 (04)
  • [40] Waste heat recovery of organic Rankine cycle using dry fluids
    Hung, TC
    ENERGY CONVERSION AND MANAGEMENT, 2001, 42 (05) : 539 - 553