Topological dipole insulator

被引:1
|
作者
Lam, Ho Tat [1 ]
Han, Jung Hoon [2 ]
You, Yizhi [3 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Sungkyunkwan Univ, Dept Phys, Suwon 16419, South Korea
[3] Northeastern Univ, Dept Phys, 360 Huntington Ave, Boston, MA 02115 USA
来源
SCIPOST PHYSICS | 2024年 / 17卷 / 05期
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
PHASES;
D O I
10.21468/SciPostPhys.17.5.137
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We expand the concept of two-dimensional topological insulators to encompass a novel category known as topological dipole insulators (TDIs), characterized by conserved dipole moments along the x-direction in addition to charge conservation. By generalizing Laughlin's flux insertion argument, we prove a no-go theorem and predict possible edge patterns and anomalies in a TDI with both charge U e (1) and dipole U ' (1) symmetries. The edge of a TDI is characterized as a quadrupolar channel that displays a dipole U ' (1) anomaly. A quantized amount of dipole gets transferred between the edges under the dipolar flux insertion, manifesting as 'quantized quadrupolar Hall effect' in TDIs. A microscopic coupled-wire Hamiltonian realizing the TDI is constructed by introducing a mutually commuting pair-hopping terms between wires to gap out all the bulk modes while preserving the dipole moment. The effective action at the quadrupolar edge can be derived from the wire model, with the corresponding bulk dipolar Chern-Simons response theory delineating the topological electromagnetic response in TDIs. Finally, we enrich our exploration of topological dipole insulators to the spinful case and construct a dipolar version of the quantum spin Hall effect, whose boundary evidences a mixed anomaly between spin and dipole symmetry. Effective bulk and the edge action for the dipolar quantum spin Hall insulator are constructed as well.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Topological Insulator Nanowires and Nanoribbons
    Kong, Desheng
    Randel, Jason C.
    Peng, Hailin
    Cha, Judy J.
    Meister, Stefan
    Lai, Keji
    Chen, Yulin
    Shen, Zhi-Xun
    Manoharan, Hari C.
    Cui, Yi
    NANO LETTERS, 2010, 10 (01) : 329 - 333
  • [42] Theory of the Topological Anderson Insulator
    Groth, C. W.
    Wimmer, M.
    Akhmerov, A. R.
    Tworzydlo, J.
    Beenakker, C. W. J.
    PHYSICAL REVIEW LETTERS, 2009, 103 (19)
  • [43] Topological insulator and quantum memory
    Kulig, M.
    Kurashvili, P.
    Jasiukiewicz, C.
    Inglot, M.
    Wolski, S.
    Stagraczynski, S.
    Maslowski, T.
    Szczepanski, T.
    Stagraczynski, R.
    Dugaev, V. K.
    Chotorlishvili, L.
    PHYSICAL REVIEW B, 2023, 108 (13)
  • [44] Floquet topological insulator laser
    Ivanov, Sergey K.
    Zhang, Yiqi
    Kartashov, Yaroslav V.
    Skryabin, Dmitry V.
    APL PHOTONICS, 2019, 4 (12)
  • [45] Flexible Photonic Topological Insulator
    Gao, Zhen
    Gao, Fei
    Zhang, Youming
    Luo, Yu
    Zhang, Baile
    ADVANCED OPTICAL MATERIALS, 2018, 6 (17):
  • [46] Topological insulator nanostructures and devices
    修发贤
    赵彤彤
    Chinese Physics B, 2013, (09) : 44 - 57
  • [47] Patterning Superconductivity in a Topological Insulator
    Mlack, Jerome T.
    Rahman, Atikur
    Danda, Gopinath
    Drichko, Natalia
    Friedensen, Sarah
    Drndic, Marija
    Markovic, Nina
    ACS NANO, 2017, 11 (06) : 5873 - 5878
  • [48] Photonic amorphous topological insulator
    Zhou, Peiheng
    Liu, Gui-Geng
    Ren, Xin
    Yang, Yihao
    Xue, Haoran
    Bi, Lei
    Deng, Longjiang
    Chong, Yidong
    Zhang, Baile
    LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
  • [49] Topological insulator on the kagome lattice
    Guo, H. -M.
    Franz, M.
    PHYSICAL REVIEW B, 2009, 80 (11):
  • [50] Hybridization of anti-dipole plasmon oscillation and phonon in the topological insulator Bi2Se3
    In, Chihun
    Sim, Sangwan
    Park, Jun
    Kim, Jaeseok
    Park, Sungjoon
    Koirala, Nikesh
    Brahlek, Matthew
    Moon, Jisoo
    Salehi, Maryam
    Oh, Seongshik
    Choi, Hyunyong
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,