Distributed heterogeneous flexible job-shop scheduling problem considering automated guided vehicle transportation via improved deep Q network

被引:0
|
作者
Yuan, Minghai [1 ]
Lu, Songwei [1 ]
Zheng, Liang [1 ]
Yu, Qi [1 ]
Pei, Fengque [1 ]
Gu, Wenbin [1 ]
机构
[1] Hohai Univ, Coll Mech & Elect Engn, Changzhou, Peoples R China
关键词
Distributed heterogeneous flexible job-shop; scheduling; AGV; Deep reinforcement learning; Deep Q network; Combination dispatching rule; OPTIMIZATION;
D O I
10.1016/j.swevo.2025.101902
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Distributed manufacturing has become a research hotspot in the context of economic globalization. The distributed heterogeneous flexible job-shop scheduling problem considering automated guided vehicle transportation (DHFJSP-AGV) extends the classic flexible job-shop scheduling problem (FJSP) but remains under- explored. DHFJSP-AGV involves four subproblems: assigning jobs to heterogeneous factories, scheduling jobs to machines, sequencing operations on machines and transporting jobs between machines using AGVs. Due to its complexity, this study proposes an improved deep Q network (DQN) real-time scheduling method aimed at minimizing makespan. A mixed integer linear programming model (MILP) of DHFJSP-AGV is developed and transformed into a Markov decision process (MDP). Eight general state features are extracted and normalized to represent the state space, while appropriate combination dispatching rules are selected as the action space. The state features of each scheduling point are input to the DQN, determining the factory, job, machine, and AGV for each process. Additionally, double DQN and an improved epsilon-greedy exploration are used to enhance the DQN. Numerical comparison experiments under different production configurations and real-world application in distributed flexible job-shop with dynamic map environment demonstrate the effectiveness and generalization capabilities of improved DQN.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem
    Maroua Nouiri
    Abdelghani Bekrar
    Abderezak Jemai
    Smail Niar
    Ahmed Chiheb Ammari
    Journal of Intelligent Manufacturing, 2018, 29 : 603 - 615
  • [22] An improved memetic algorithm for the flexible job shop scheduling problem with transportation times
    Zhang, Guohui
    Sun, Jinghe
    Lu, Xixi
    Zhang, Haijun
    MEASUREMENT & CONTROL, 2020, 53 (7-8): : 1518 - 1528
  • [23] An improved artificial bee colony algorithm for fuzzy flexible job-shop scheduling problem
    Zheng X.-C.
    Gong W.-Y.
    Gong, Wen-Yin (wygong@cug.edu.cn), 1600, South China University of Technology (37): : 1284 - 1292
  • [24] An Improved Genetic Algorithm for Multi-objective Flexible Job-shop Scheduling Problem
    Zhang, Chaoyong
    Wang, Xiaojuan
    Gao, Liang
    MANUFACTURING SCIENCE AND ENGINEERING, PTS 1-5, 2010, 97-101 : 2449 - 2454
  • [25] An improved genetic algorithm for the re-entrant and flexible job-shop scheduling problem
    Zhang Mei
    Wu Kaihua
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 3399 - 3404
  • [26] Joint optimisation for dynamic flexible job-shop scheduling problem with transportation time and resource constraints
    Ren, Weibo
    Yan, Yan
    Hu, Yaoguang
    Guan, Yu
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2022, 60 (18) : 5675 - 5696
  • [27] An improved SFLA for flexible job shop scheduling problem considering energy consumption
    Zhang, Xiaoxing
    Ji, Zhicheng
    Wang, Yan
    MODERN PHYSICS LETTERS B, 2018, 32 (34-36):
  • [28] A Q-Learning-Based Hyper-Heuristic Evolutionary Algorithm for the Distributed Flexible Job-Shop Scheduling Problem
    Wu, Fang-Chun
    Qian, Bin
    Hu, Rong
    Zhang, Zi-Qi
    Wang, Bin
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 251 - 261
  • [29] A novel method for solving dynamic flexible job-shop scheduling problem via DIFFormer and deep reinforcement learning
    Wan, Lanjun
    Cui, Xueyan
    Zhao, Haoxin
    Fu, Long
    Li, Changyun
    COMPUTERS & INDUSTRIAL ENGINEERING, 2024, 198
  • [30] Study on Multi-objective Flexible Job-shop Scheduling Problem considering Energy Consumption
    Jiang, Zengqiang
    Zuo, Le
    Mingcheng E
    JOURNAL OF INDUSTRIAL ENGINEERING AND MANAGEMENT-JIEM, 2014, 7 (03): : 589 - 604